Heun's method

In mathematics and computational science, Heun's method may refer to the improved[1] or modified Euler's method (that is, the explicit trapezoidal rule[2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.

The procedure for calculating the numerical solution to the initial value problem:

by way of Heun's method, is to first calculate the intermediate value and then the final approximation at the next integration point.

where is the step size and .

Description

Euler's method is used as the foundation for Heun's method. Euler's method uses the line tangent to the function at the beginning of the interval as an estimate of the slope of the function over the interval, assuming that if the step size is small, the error will be small. However, even when extremely small step sizes are used, over a large number of steps the error starts to accumulate and the estimate diverges from the actual functional value.

Where the solution curve is concave up, its tangent line will underestimate the vertical coordinate of the next point and vice versa for a concave down solution. The ideal prediction line would hit the curve at its next predicted point. In reality, there is no way to know whether the solution is concave-up or concave-down, and hence if the next predicted point will overestimate or underestimate its vertical value. The concavity of the curve cannot be guaranteed to remain consistent either and the prediction may overestimate and underestimate at different points in the domain of the solution. Heun's Method addresses this problem by considering the interval spanned by the tangent line segment as a whole. Taking a concave-up example, the left tangent prediction line underestimates the slope of the curve for the entire width of the interval from the current point to the next predicted point. If the tangent line at the right end point is considered (which can be estimated using Euler's Method), it has the opposite problem.[3] The points along the tangent line of the left end point have vertical coordinates which all underestimate those that lie on the solution curve, including the right end point of the interval under consideration. The solution is to make the slope greater by some amount. Heun's Method considers the tangent lines to the solution curve at both ends of the interval, one which overestimates, and one which underestimates the ideal vertical coordinates. A prediction line must be constructed based on the right end point tangent's slope alone, approximated using Euler's Method. If this slope is passed through the left end point of the interval, the result is evidently too steep to be used as an ideal prediction line and overestimates the ideal point. Therefore, the ideal point lies approximately halfway between the erroneous overestimation and underestimation, the average of the two slopes.

Heun's Method.
A diagram depicting the use of Heun's method to find a less erroneous prediction when compared to the lower order Euler's Method

Euler's Method is used to roughly estimate the coordinates of the next point in the solution, and with this knowledge, the original estimate is re-predicted or corrected.[4] Assuming that the quantity on the right hand side of the equation can be thought of as the slope of the solution sought at any point , this can be combined with the Euler estimate of the next point to give the slope of the tangent line at the right end-point. Next the average of both slopes is used to find the corrected coordinates of the right end interval.

Derivation

Using the principle that the slope of a line equates to the rise/run, the coordinates at the end of the interval can be found using the following formula:

,

The accuracy of the Euler method improves only linearly with the step size is decreased, whereas the Heun Method improves accuracy quadratically .[5] The scheme can be compared with the implicit trapezoidal method, but with replaced by in order to make it explicit. is the result of one step of Euler's method on the same initial value problem. So, Heun's method is a predictor-corrector method with forward Euler's method as predictor and trapezoidal method as corrector.

Runge–Kutta method

The improved Euler's method is a two-stage Runge–Kutta method, and can be written using the Butcher tableau (after John C. Butcher):

0
1 1
1/2 1/2

The other method referred to as Heun's method (also known as Ralston's method) has the Butcher tableau:[6]

0
2/3 2/3
1/4 3/4

This method minimizes the truncation error.

References

  1. ^ Süli, Endre; Mayers, David (2003), An Introduction to Numerical Analysis, Cambridge University Press, ISBN 0-521-00794-1.
  2. ^ Ascher, Uri M.; Petzold, Linda R. (1998), Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-412-8.
  3. ^ "Numerical Methods for Solving Differential Equations". San Joaquin Delta College. Archived from the original on 2009-02-12.
  4. ^ Chen, Wenfang.; Kee, Daniel D. (2003), Advanced Mathematics for Engineering and Science, MA, USA: World Scientific, ISBN 981-238-292-5.
  5. ^ "The Euler-Heun Method" (PDF). LiveToad.org. Archived from the original (PDF) on 2018-10-14.
  6. ^ Leader, Jeffery J. (2004), Numerical Analysis and Scientific Computation, Boston: Addison-Wesley, ISBN 0-201-73499-0.

Read other articles:

Partai Sosialis Yaman الحزب الاشتراكي اليمنيSekretaris UmumAbdulraham Al-SaqqafPendiriAbdul Fattah Ismail, Ali Nashir Muhammad, Ali Salem al BeidhDibentuk1978[1]Didahului olehFront Pembebasan NasionalKantor pusatAden, YamanIdeologiSosialisme IslamDemokrasi sosialNasionalisme Arab1978-1990:KomunismeMarxisme-LeninismePosisi politikKiri tengah sampai sayap kiriAfiliasi internasionalAliansi Progresif,Sosialis InternasionalWarna  MerahDewan Perwakilan8 / ...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

CityBaqa-Jatt באקה-ג'תباقة جتّCityHebrew transcription(s) • Also spelledBaqa-Jat (official)A residential area in Baqa al-GharbiyyeBaqa-JattShow map of Haifa region of IsraelBaqa-JattShow map of IsraelCoordinates: 32°24′59.22″N 35°2′53.87″E / 32.4164500°N 35.0482972°E / 32.4164500; 35.0482972District HaifaArea • Total16,392 dunams (16.392 km2 or 6.329 sq mi) Baqa-Jatt was an Israeli...

Willard Van Orman QuineLahir(1908-06-25)25 Juni 1908Akron, OhioMeninggal25 Desember 2000(2000-12-25) (umur 92)Boston, MassachusettsEraFilsafat abad ke-20KawasanFilsafat BaratAliranAnalitik Penghargaan Kyoto Prize dalam Seni dan Filsafat 1996 Minat utamaLogika, ontologi, epistemologi, filsafat bahasa, filsafat matematika, filsafat ilmu, Teori himpunanGagasan pentingNew Foundations, Indeterminansi penerjemahan, Naturalized epistemology, Ontological relativity, Quine's paradox, T...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

إيفان يوريتش معلومات شخصية الميلاد 25 أغسطس 1975 (العمر 48 سنة)سبليت الطول 1.74 م (5 قدم 8 1⁄2 بوصة) مركز اللعب وسط الجنسية كرواتيا  معلومات النادي النادي الحالي تورينو (مدرب) المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1993–1997 هايدوك سبليت 53 (2) 1997–2001 إشبيلية 64 (6) 2000 → ألباسي...

 

Fully automated transit systemThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Automated guideway transit – news · newspapers · books · scholar · JSTOR (January 2024) (Learn how and when to remove this message)Port Island Line AGT, Kobe, Japan (the world's first mass transit AGT) Automated track-bound traffic...

 

ويكي بياناتالشعارالصفحة الرئيسية لويكي بياناتمعلومات عامةموقع الويب wikidata.org[1][2] (لغات متعددة) الشعار النصي the free knowledge base that anyone can edit (بالإنجليزية)la base de conocimiento libre que todo el mundo puede editar (بالإسبانية) نوع الموقع  القائمة ... مشروع محتوى من ويكيميديا — ويكي دلالية — ويكي م...

Sungai Ruzizi Kuda nil di Sungai Ruzizi di Burundi Negara Republik Demokratik KongoRwandaBurundi Sumber Danau Kivu  - location Perbatasan antara Bukavu dan Cyangugu, Kivu Selatan, Republik Demokratik Kongo & Provinsi Barat, Rwanda  - elevation 1.472 m (4.829 ft) Muara Danau Tanganyika  - lokasi Sebelah barat Bujumbura, Burundi, Provinsi Pedesaan Bujumbura  - elevation 768 m (2.520 ft) Panjang 117 km (73 mi) [1] D...

 

1981 live album by Art Blakey and The Jazz Messengers Big BandLive at Montreux and NorthseaLive album by Art Blakey and The Jazz Messengers Big BandReleased1981RecordedJuly 13 & 17, 1980VenueNorthsea Jazz Festival, The Hague, the Netherlands and Montreux Jazz Festival, Montreux, SwitzerlandGenreJazzLength43:05LabelTimelessSJP 150ProducerWim WigtArt Blakey and the Jazz Messengers chronology One by One(1979) Live at Montreux and Northsea(1981) Art Blakey in Sweden(1981) Live at Mont...

 

  لمعانٍ أخرى، طالع غوشين (توضيح). غوشين   الإحداثيات 38°24′06″N 85°34′58″W / 38.4017°N 85.5828°W / 38.4017; -85.5828   [1] تاريخ التأسيس 1849  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة أولدهام  خصائص جغرافية  المساحة 517997 متر مربع0....

Village in Uttar Pradesh, IndiaJohwa Sharki Johwa SharqiVillageMap showing Johwa Sharki (#199) in Harchandpur CD blockJohwa SharkiLocation in Uttar Pradesh, IndiaCoordinates: 26°22′48″N 81°05′42″E / 26.379908°N 81.095082°E / 26.379908; 81.095082[1]Country India IndiaStateUttar PradeshDistrictRaebareliArea[2] • Total19.349 km2 (7.471 sq mi)Population (2011)[2] • Total10,657 •...

 

Scout NetworkScout Network section logoOwnerThe Scout AssociationAge range18–25CountryUnited KingdomFounded2001Membership8,143 (January 2023)[1] PreviousExplorer ScoutsExplorer Sea ScoutsExporer Air Scouts Scout Network uniform Adult leader uniform  Scouting portal The Scout Network is the sixth and final youth section of The Scout Association in the United Kingdom, catering for those aged between 18 and 25 years.[2] The section was formally introduced in February 2002...

 

Void between celestial bodies This article is about the space between celestial bodies. For the general concept, see Space. For other uses, see Outer space (disambiguation). Being essentially empty, outer space allows the earliest (redder) galaxies to be viewed without obstruction, as in the Webb's First Deep Field image. Outer space (or simply space) is the expanse that exists beyond Earth's atmosphere and between celestial bodies.[1] It contains ultra-low levels of particle densitie...

日本の政治家勝田 主計(しょうだ かずえ) 1932(昭和7)年当時生年月日 (1869-10-19) 1869年10月19日出生地 愛媛県松山市没年月日 (1948-10-10) 1948年10月10日(78歳没)出身校 東京帝国大学テンプレートを表示 大礼服を着た勝田 勝田 主計(しょうだ かずえ、明治2年旧暦9月15日〈1869年10月19日〉- 昭和23年〈1948年〉10月10日)は、日本の大蔵官僚、政治家。理財局長、大蔵次官�...

 

English Civil War army (1645–60) This article is about the 17th-century Parliamentarian military. For the band, see New Model Army (band). New Model ArmyThe Souldiers Catechiſme:[1] Religious justification for the New Model ArmyActive1645–1660Country Commonwealth of EnglandAllegiance Council of State (1649–1653; 1659–1660) Lord Protector (1653–1659) TypeArmyEngagements First English Civil War Second English Civil War Conquest of Ireland Third English Civil War First An...

 

French mathematician (born 1947) Alain ConnesAlain Connes in 2004Born (1947-04-01) 1 April 1947 (age 77)Draguignan, FranceAlma materÉcole Normale Supérieure Pierre and Marie Curie UniversityKnown forBaum–Connes conjectureNoncommutative geometryNoncommutative standard modelOperator algebrasThermal time hypothesisAwardsPeccot-Vimont Prize (1976)CNRS Silver Medal (1977) Ampère Prize (1980) Fields Medal (1982) Clay Research Award (2000) Crafoord Prize (2001) CNRS Gold medal (2...

Brasilien i olympiska spelen IOK-landskodBRA KommittéBrasiliens Olympiska KommittéOlympiska sommarspelen 1948 i LondonDeltagare70 deltagare i 11 grenar Medaljsummering Guld0 Silver0 Brons1 Totalt1 Brasilien i olympiska sommarspelen1920 • 1924 • 1928 • 1932 • 1936 • 1948 • 1952 • 1956 • 1960 • 1964 • 1968 • 1972 • 1976 • 1980 • 1984 • 1988 • 1992 • 1996&#...

 

ダウン県County Down (en)Contae an Dúin (ga)Coontie Doon (sco) カウンティ(県) 紋章 標語: Nothing Without Labour労働なしでは何もない 国 イギリス非独立国 北アイルランド地方 アルスター県都 ダウンパトリック面積 • 合計 2,448 km2 (945 mi2)面積順位 12人口(2011年) 531,665人 • 順位 4 ダウン県(英: County Down、アイルランド語: Contae an Dúin、スコットラン...