Fourier expansion of a reciprocal square root
In mathematical analysis , Heine's identity , named after Heinrich Eduard Heine [ 1] is a Fourier expansion of a reciprocal square root which Heine presented as
1
z
− − -->
cos
-->
ψ ψ -->
=
2
π π -->
∑ ∑ -->
m
=
− − -->
∞ ∞ -->
∞ ∞ -->
Q
m
− − -->
1
2
(
z
)
e
i
m
ψ ψ -->
{\displaystyle {\frac {1}{\sqrt {z-\cos \psi }}}={\frac {\sqrt {2}}{\pi }}\sum _{m=-\infty }^{\infty }Q_{m-{\frac {1}{2}}}(z)e^{im\psi }}
where[ 2]
Q
m
− − -->
1
2
{\displaystyle Q_{m-{\frac {1}{2}}}}
is a Legendre function of the second kind, which has degree, m − 1 ⁄2 , a half-integer, and argument, z , real and greater than one. This expression can be generalized[ 3] for arbitrary half-integer powers as follows
(
z
− − -->
cos
-->
ψ ψ -->
)
n
− − -->
1
2
=
2
π π -->
(
z
2
− − -->
1
)
n
2
Γ Γ -->
(
1
2
− − -->
n
)
∑ ∑ -->
m
=
− − -->
∞ ∞ -->
∞ ∞ -->
Γ Γ -->
(
m
− − -->
n
+
1
2
)
Γ Γ -->
(
m
+
n
+
1
2
)
Q
m
− − -->
1
2
n
(
z
)
e
i
m
ψ ψ -->
,
{\displaystyle (z-\cos \psi )^{n-{\frac {1}{2}}}={\sqrt {\frac {2}{\pi }}}{\frac {(z^{2}-1)^{\frac {n}{2}}}{\Gamma ({\frac {1}{2}}-n)}}\sum _{m=-\infty }^{\infty }{\frac {\Gamma (m-n+{\frac {1}{2}})}{\Gamma (m+n+{\frac {1}{2}})}}Q_{m-{\frac {1}{2}}}^{n}(z)e^{im\psi },}
where
Γ Γ -->
{\displaystyle \scriptstyle \,\Gamma }
is the Gamma function .
References
^ Heine, Heinrich Eduard (1881). Handbuch der Kugelfunctionen, Theorie und Andwendungen . Wuerzburg: Physica-Verlag . (See page 286 )
^ Cohl, Howard S.; J.E. Tohline; A.R.P. Rau; H.M. Srivastava (2000). "Developments in determining the gravitational potential using toroidal functions". Astronomische Nachrichten . 321 (5/6): 363– 372. Bibcode :2000AN....321..363C . doi :10.1002/1521-3994(200012)321:5/6<363::AID-ASNA363>3.0.CO;2-X . ISSN 0004-6337 .
^ Cohl, H. S. (2003). "Portent of Heine's Reciprocal Square Root Identity". 3D Stellar Evolution, ASP Conference Proceedings, held 22-26 July 2002 at University of California Davis, Livermore, California, USA. Edited by Sylvain Turcotte, Stefan C. Keller and Robert M. Cavallo . Vol. 293. ISBN 1-58381-140-0 .