Hamiltonian truncation

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics.[1] The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

Principles

Energy cutoff

Local quantum field theories can be defined on any manifold. Often, the spacetime of interest includes a copy of , like (flat space), (an infinite hollow cylinder), (space is taken to be a torus) or even Anti-de Sitter space in global coordinates. On such a manifold we can take time to run along , such that energies are conserved. Solving such a QFT amounts to finding the spectrum and eigenstates of the Hamiltonian H, which is difficult or impossible to do analytically. Hamiltonian truncation provides a strategy to compute the spectrum of H to arbitrary precision. The idea is that many QFT Hamiltonians can be written as the sum of "free" part and an "interacting" part that describes interactions (for example a term or a Yukawa coupling), schematically

where V can be written as the integral of a local operator over M. There may be multiple interaction terms , but that case generalizes straightforwardly from the case with a single interaction . Hamiltonian truncation amounts to the following recipe:

  1. Fix a UV cutoff , and find all eigenstates of with energy . Normalize these eigenstates such that . Let be the number of low-energy states.
  2. Compute the Hamiltonian explicitly restricted to these low-energy states. The result will be a matrix of size , explicitly with
  3. Compute the energies and eigenstates of the finite matrix , obeying .

In a UV-finite quantum field theory, the resulting energies have a finite limit as the cutoff is taken to infinity, so at least in principle the exact spectrum of the Hamiltonian can be recovered. In practice the cutoff is always finite, and the procedure is performed on a computer.

Range of validity

For a given cutoff , Hamiltonian truncation has a finite range of validity, meaning that cutoff errors become important when the coupling g is too large. To make this precise, let's take R to be the rough size of the manifold M, that is to say that

up to some c-number coefficient. If the deformation V is the integral of a local operator of dimension , then the coupling g will have mass dimension , so the redefined coupling

is dimensionless. Depending on the order of magnitude of , we can distinguish three different regimes:

  • : perturbation theory is valid. Generically, perturbation theory is either asymptotic or it converges up to some value . For infinitesimal values of , quantum effects can be neglected.
  • : perturbation theory is no longer reliable, but the truncated energies provide a good approximation to their continuum values for reasonable values of the cutoff .
  • : for very large values of (or equivalently, when the volume of M becomes very large), Hamiltonian truncation only provides good results when the cutoff is taken to be astronomically large. In practice, this regime is not accessible. This is an avatar of the orthogonality catastrophe.

Truncation errors and ultraviolet divergences

There are two intrinsic but related issues with Hamiltonian truncation:

  1. In some cases, the do not have a finite limit as .
  2. Even when the continuum limit exists, we only have access to cutoff data for a range of finite values of the cutoff.

The first case is due to ultraviolet divergences of the quantum field theory in question. In this case, cutoff-dependent counterterms must be added to the Hamiltonian H in order to obtain a physically meaningful result. In order to understand the second problem, one can perform perturbative computations to understand the continuum limit analytically.[2][3][4][5][6]

Let us spell this out using an example. We have in mind a perturbation of the form gV with

where is a local operator. Suppose that we want to compute the first corrections to the vacuum energy due to V. In Rayleigh–Schrödinger perturbation theory, we know that

where

where the sum runs over all states other than the vacuum itself. Whether this integral converges or not depends on the large-E behavior of the spectral density . In turn, this depends on the short-distance behavior of the two-point correlation function of the operator . Indeed, we can write

where evolves in Euclidean time in the interaction picture. Hence the large-E behavior of the spectral density encodes the short-time behavior of the vacuum correlator, where both x,y are integrated over space. The large-E scaling can be computed in explicit theories; in general it goes as

where is the scaling or mass dimension of the operator and c is some constant. There are now two possibilities, depending on the value of :

  • If , the truncated Casimir energy diverges in the continuum limit. In this case, a cutoff-dependent counterterm must be added to H in order to cancel this divergence.
  • If , the truncated Casimir energy converges as . The truncation error can be estimated to be

A similar analysis applies to cutoff errors in excited states and at higher orders in perturbation theory.

Example of the massive scalar φ4 theory

Quantization

As an example, we can consider a massive scalar field on some spacetime , where M is compact (possibly having a boundary). The total metric can be written as

Let's consider the action

where is the Laplacian on . The g=0 theory can be canonically quantized, which endows the field with a mode decomposition

where the creation and annihilation operators obey canonical commutation relations . The single-particle energies and the mode functions depend on the spatial manifold M. The Hamiltonian at t=0 is then given by

Hamiltonian truncation

The Hilbert space of the theory is the Fock space of the modes . That is to say that there exists a vacuum state obeying for all n, and on top of that there are single- and multi-particle states. Explicitly, a general eigenstate of is labeled by a tuple of occupation numbers:

where the can take values in the integers: . Such a state has energy

so finding a basis of low-energy states amounts to finding all tuples obeying . Let's denote all such states schematically as . Next, the matrix elements can be computed explicitly using the canonical commutation relations. Finally, the explicit Hamiltonian has to be diagonalized.

The resulting spectra can be used to study precision physics. Depending on the values of g and , the above theory can be in a symmetry-preserving or a symmetry-broken phase, which can be studied explicitly using the above algorithm. The continuous phase transition between these two phases can also be analyzed, in which case the spectrum and eigenstates of H contain information about the conformal field theory of the Ising universality class.[7][8][9]

Special cases

Truncated Conformal Space Approach

The truncated conformal space approach (TCSA) is a version of the Hamiltonian truncation that applies to perturbed conformal field theories. This approach was introduced by Yurov and Al. Zamolodchikov in 1990[10] and has become a standard ingredient used to study two-dimensional QFTs.[11] The d-dimensional version of TCSA was first studied in 2014.[3]

A RG flow emanating from a conformal field theory (CFT) is described by an action

where is a scalar operator in the CFT of scaling dimension . At large distances, such theories are strongly coupled. It is convenient to study such RG flows on the cylinder , taking the sphere to have radius R and endowing the full space with coordinates . The reason is that the unperturbed (g=0) theory admits a simple description owing to radial quantization. Schematically, states on the cylinder are in one-to-one correspondence with local operators inserted at the origin of flat space:

where is the CFT vacuum state. The Hamiltonian on the cylinder is precisely the dilatation operator D of the CFT: the unperturbed energies are given by

where is the scaling dimension of the operator . Finally, the matrix elements of the deformation V

are proportional to OPE coefficients in the original CFT.

Lightcone truncation methods

Real-time QFTs are often studied in lightcone coordinates

Although the spectrum of the lightcone Hamiltonian is continuous, it is still possible to compute certain observables using truncation methods. The most commonly used scheme, used when the UV theory is conformal, is known as lightcone conformal truncation (LCT).[12][13] Notably, the spatial manifold M is non-compact in this case, unlike the equal-time quantization described previously. See also the page for light-front computational methods, which describes related computational setups.

Numerical implementation

Hamiltonian truncation computations are normally performed using a computer algebra system, or a programming language like Python or C++.

The number of low-energy states tends to grow rapidly with the UV cutoff, and it is common to perform Hamiltonian truncation computations taking into account several thousand states. Nonetheless, one is often only interested in the first O(10) energies and eigenstates of H. Instead of diagonalizing the full Hamiltonian explicitly (which is numerically very costly), approximation methods like Arnoldi iteration and the Lanczos algorithm are commonly used.

In some cases, it is not possible to orthonormalize the low-energy states , either because this is numerically expensive or because the underlying Hilbert space is not positive definite. In that case, one has to solve the generalized eigenvalue problem

where and is the Gram matrix of the theory. In this formulation, the eigenstates of the truncated Hamiltonian are .

In practice, it is important to keep track of the symmetries of the theory, that is to say all generators that satisfy . There are two types of symmetries in Hamiltonian truncation:

  1. Global symmetries, for instance the symmetry in theory.
  2. Symmetries of the spatial manifold M, for instance the orthogonal group when .

When all states are organized in symmetry sectors with respect to the the Hamiltonian is block diagonal, so the effort required to diagonalize H is reduced.

References

  1. ^ Whitsitt, Seth; Schuler, Michael; Henry, Louis-Paul; Läuchli, Andreas M.; Sachdev, Subir (2017-07-24). "Spectrum of the Wilson-Fisher conformal field theory on the torus". Physical Review B. 96 (3). American Physical Society (APS): 035142. arXiv:1701.03111. Bibcode:2017PhRvB..96c5142W. doi:10.1103/physrevb.96.035142. ISSN 2469-9950. S2CID 119336211.
  2. ^ Philip Giokas; Gerard Watts (2011). "The renormalisation group for the truncated conformal space approach on the cylinder". arXiv:1106.2448 [hep-th].
  3. ^ a b Matthijs Hogervorst, Slava Rychkov and Balt C. van Rees (2015). "Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?". Phys. Rev. D. 91 (2): 025005. arXiv:1409.1581. Bibcode:2015PhRvD..91b5005H. doi:10.1103/PhysRevD.91.025005. S2CID 119273053.
  4. ^ Joan Elias-Miro, Slava Rychkov and Lorenzo G. Vitale (2017). "NLO Renormalization in the Hamiltonian Truncation". Phys. Rev. D. 96 (6): 065024. arXiv:1706.09929. Bibcode:2017PhRvD..96f5024E. doi:10.1103/PhysRevD.96.065024. S2CID 119367912.
  5. ^ Daniel Rutter; Balt C. van Rees (2018). "Counterterms in Truncated Conformal Perturbation Theory". arXiv:1803.05798 [hep-th].
  6. ^ Hogervorst, Matthijs; Meineri, Marco; Penedones, João; Vaziri, Kamran Salehi (2021). "Hamiltonian truncation in Anti-de Sitter spacetime". Journal of High Energy Physics. 2021 (8). Springer: 63. arXiv:2104.10689. Bibcode:2021JHEP...08..063H. doi:10.1007/jhep08(2021)063. ISSN 1029-8479. S2CID 233346724.
  7. ^ Slava Rychkov and Lorenzo G. Vitale (2015). "Hamiltonian truncation study of the theory in two dimensions". Phys. Rev. D. 91: 085011. arXiv:1412.3460. doi:10.1103/PhysRevD.91.085011. S2CID 119343646.
  8. ^ Joan Elias-Miro, Slava Rychkov and Lorenzo G. Vitale (2017). "High-Precision Calculations in Strongly Coupled Quantum Field Theory with Next-to-Leading-Order Renormalized Hamiltonian Truncation". JHEP. 2017 (10): 213. arXiv:1706.06121. Bibcode:2017JHEP...10..213E. doi:10.1007/JHEP10(2017)213. S2CID 56094893.
  9. ^ Joan Elias-Miro and Edward Hardy (2020). "Exploring Hamiltonian Truncation in d=2+1". Phys. Rev. D. 102 (6): 065001. arXiv:2003.08405. Bibcode:2020PhRvD.102f5001E. doi:10.1103/PhysRevD.102.065001. S2CID 213004924.
  10. ^ V.P. Yurov and Al. B. Zamolodchikov (1990). "Truncated Conformal Space Approach to Scaling Lee-Yang Model". Int. J. Mod. Phys. A. 5 (16): 3221–3246. Bibcode:1990IJMPA...5.3221Y. doi:10.1142/S0217751X9000218X.
  11. ^ James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M (2018-02-26). "Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods". Reports on Progress in Physics. 81 (4). IOP Publishing: 046002. arXiv:1703.08421. Bibcode:2018RPPh...81d6002J. doi:10.1088/1361-6633/aa91ea. ISSN 0034-4885. S2CID 206095591.
  12. ^ Emanuel Katz, Zuhair U. Khandker and Matthew T. Walters (2016). "A Conformal Truncation Framework for Infinite-Volume Dynamics". JHEP. 2016 (7): 140. arXiv:1604.01766. Bibcode:2016JHEP...07..140K. doi:10.1007/JHEP07(2016)140. S2CID 92981707.
  13. ^ Nikhil Anand; A. Liam Fitzpatrick; Emanuel Katz; Zuhair U. Khandker; Matthew T. Walters; Yuan Xin (2020). "Introduction to Lightcone Conformal Truncation: QFT Dynamics from CFT Data". arXiv:2005.13544 [hep-th].

Read other articles:

Marion LeonardThe Theater of Science, 1914Lahir(1881-06-09)9 Juni 1881Cincinnati, Ohio, A.S.Meninggal9 Januari 1956(1956-01-09) (umur 74)Woodland Hills, California, A.S.PekerjaanAktrisTahun aktif1908–1915, 1926Suami/istriStanner E.V. Taylor Marion Leonard (9 Juni 1881 – 9 Januari 1956) adalah seorang aktris panggung Amerika yang menjadi salah satu selebriti film pertama pada tahun-tahun awal era film bisu.[1] Referensi ^ The Theater of Science vol. 29 1914...

 

Al-Qaeda di Islam Maghrebتنظيم القاعدة في بلاد المغرب الإسلاميVarian bendera hitam yang digunakan oleh AQIMPemimpinAbdelmalek DroukdelWaktu operasi2007 (2007)–sekarangKelompok Al-Mourabitoun MarkasPegunungan Kabylie[1][2]Wilayah operasiMaghreb dan Sahel Utamanya di sepanjang Utara dan Selatan Aljazair, Mali dan Mauritania[3] Ideologi Jihadisme Salafis[4] Salafisme[5] Bagian dari Al-QaedaSekutu Ansaru Ansa...

 

Association football club in Scotland Football clubDuncrub ParkFull nameDuncrub Park Football ClubNickname(s)Auld Dinnin',[1] the Thorntree Villagers,[2] the Lowlanders[3]Founded1885Dissolved1910GroundCroft ParkSecretaryHarry Christie[4] Home colours Duncrub Park Football Club was a football club from the village of Dunning, Perthshire, Scotland. History Report of the Scottish Cup First Round tie between Duncrub Park and Hibernian, Dundee Courier, 11 January 18...

Wakil Bupati Way KananPetahanaDrs. Ali Rahman, S.T., M.T.sejak 26 Februari 2021Masa jabatan5 tahunDibentuk2000Pejabat pertamaDrs. H. Marsidi Hasan, M.M.Situs webwww.waykanankab.go.id Berikut ini adalah daftar Wakil Bupati Way Kanan dari masa ke masa. No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 Drs. H.Marsidi HasanM.M. 2000 2005 1   Drs. H.TamanuriM.M. 2 H.Bustami ZainudinS.Pd., M.M. 2005 2010 2   3 H.Raden Nasution HusinS.E., M.M. 23 Agustus 2010 23 Agustus 2...

 

Пример двух единичных векторов в двумерном пространстве. Единичный вектор, или орт[1], — вектор нормированного пространства, длина которого равна единице. Единичные вектора используются, в частности, для задания направлений в пространстве. Множество единичных ве�...

 

2003 2013 Élections régionales de 2008 en Bavière 187 députés du LandtagMajorité absolue : 94 députés 28 septembre 2008 Type d’élection Élection parlementaire Corps électoral et résultats Inscrits 9 321 417 Votants 5 398 356   57,91 %  0,8 Votes exprimés 10 612 275 Votes nuls 183 729 CSU – Günther Beckstein Voix 4 603 960 43,38 %   17,3 Députés élus 92  32 SP...

Ouragan Wilma Ouragan Wilma, le 15 octobre 2005 à 19 h 15 UTC. Apparition 15 octobre 2005 Dissipation 25 octobre 2005 Catégorie maximale Ouragan catégorie 5 Pression minimale 882 hPa Vent maximal(soutenu sur 1 min) 295 km/h Dommages confirmés Considérables Morts confirmés 23 directement 39 indirectement Blessés confirmés 17 Zones touchées Haïti, Jamaïque, Îles Caïmans, Cuba, Honduras, Belize, Péninsule du Yucatán, États-Unis (Floride), Bahamas, Mexique Parcours...

 

Hypothesis that organisms have an innate tendency to evolve towards some goal Evolutionary progress as a tree of life. Ernst Haeckel, 1866 Lamarck's two-factor theory involves 1) a complexifying force that drives animal body plans towards higher levels (orthogenesis) creating a ladder of phyla, and 2) an adaptive force that causes animals with a given body plan to adapt to circumstances (use and disuse, inheritance of acquired characteristics), creating a diversity of species and genera. Popu...

 

Series of pogroms in Odessa, Ukraine (1821–1905)Members of the Jewish Labour Bund with bodies of their comrades killed in Odessa during the Russian Revolution of 1905. A series of pogroms against Jews in the city of Odessa, Ukraine, then part of the Russian Empire, took place during the 19th and early 20th centuries. They occurred in 1821, 1859, 1871, 1881 and 1905.[1] According to Jarrod Tanny, most historians in the early 21st century agree that the earlier incidents were a result...

Building in Central, Hong Kong Beaconsfield House拱北行Beaconsfield House, Hong Kong, c.1966General informationTypeGovernment officesLocation4 Queen's Road, Central, Hong KongOpening8 June 1963Destroyed1995OwnerHK GovernmentTechnical detailsFloor count6Lifts/elevators1Beaconsfield House (Chinese: 拱北行) was a government office building in Hong Kong's Central district. Built in 1963, the building was home to the Information Services Department until it was demolished along with the ...

 

Antifungal medication CiclopiroxClinical dataTrade namesMany[1]Other namesLoprox, CPXAHFS/Drugs.comMicromedex Detailed Consumer InformationMedlinePlusa604021Pregnancycategory B Routes ofadministrationTopicalATC codeD01AE14 (WHO) G01AX12 (WHO)Legal statusLegal status AU: S2 (Pharmacy medicine) CA: ℞-only US: ℞-only Pharmacokinetic dataBioavailability<5% with prolonged useProtein binding94 to 97%Elimination half-life1.7 hoursIdentifiers IUPAC name 6...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Peruvian football club Football clubUnión Deportivo AscensiónFull nameClub Unión Deportivo AscensiónNickname(s)WeccasFoundedJuly 18, 1959GroundEstadio IPD, HuancavelicaManagerJosé TembladeraLeagueCopa Perú2021Eliminated in Interregional Phase Home colours Away colours Unión Deportivo Ascensión is a Peruvian football club, located in the city of Huancavelica, Peru. The club is the largest in Ascensión city and one of the largest in Huancavelica Province. The club was founded 18 July 1...

 

Commuter rail station in Olympia Fields, Illinois Olympia FieldsOlympia Fields station in March 2017.General informationLocation203rd Street, 2 blocks east of Kedzie AvenueOlympia Fields, IllinoisCoordinates41°31′14″N 87°41′26″W / 41.520592°N 87.690439°W / 41.520592; -87.690439Owned byMetraLine(s)University Park Sub DistrictPlatforms1 island platformTracks2 tracksConstructionStructure typeElevatedParkingYesAccessibleNoOther informationFare zone3History...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: First Sampurnanand ministry – news · newspapers · books · scholar · JSTOR (August 2022) The First Sampurnanand ministry is the Council of Ministers in 1st Uttar Pradesh Legislative Assembly headed by Chief Minister Sampurnanand from 1954 to 1957.[...

 

Дэвид Боуи в 1974 году The 1980 Floor Show — музыкальный спектакль с участием британского рок-музыканта Дэвида Боуи в качестве главного действующего лица, проходивший в лондонском клубе Marquee Club 18-20 октября 1973 года. Постановка транслировалась на телеканале NBC 16 ноября 1973 года в ра...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article doit être actualisé (décembre 2021). Des passages de cet article ne sont plus d’actualité ou annoncent des événements désormais passés. Améliorez-le ou discutez-en. Vous pouvez également préciser les sections à actualiser en utilisant {{section à actualiser}}. Istituto nazionale di fisica nucleareHistoireFondation 1951CadreType Institut de rechercheDomaine d'activité Physique nucléair...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Tampilan rel beralur Rel beralur (Bahasa Inggris: Grooved rail ) adalah rel yang khusus ditanam pada tanah atau permukaan yang memiliki karakteristik keras seperti, aspal. Rel tipe ini biasanya dipasang pada trek kereta api atau trem dalam kota karena ...

 

Bad Bocklet Lambang kebesaranLetak Bad Bocklet di Bad Kissingen NegaraJermanNegara bagianBayernWilayahUnterfrankenKreisBad KissingenSubdivisions7 OrtsteilePemerintahan • MayorWolfgang Back (CSU)Luas • Total36,20 km2 (1,400 sq mi)Ketinggian230 m (750 ft)Populasi (2013-12-31)[1] • Total4.496 • Kepadatan1,2/km2 (3,2/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos97708Kode area telepon09708Pelat kendaraanKGSit...