HD 207832 is a G-type main-sequence star. Its surface temperature is 5764±15 K.[4] HD 207832 is slightly enriched compared to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.17±0.01 and is much younger at an age of 0.74±0.62 billion years. Kinematically, it belongs to the thin disk of the Milky Way.[4]
A multiplicity study in 2014 detected a candidate comoving stellar companion - a red dwarf star or brown dwarf with a spectral class M6.5, at a very wide projected separation of 38.57′ (2.0 light years)[6]
Planetary system
In 2012, two planets, named HD 207832 b and HD 207832 c, were discovered by the radial velocity method on wide, eccentric orbits.[5] The planetary system would remain stable even if the planetary orbits are coplanar.[7]
Although discovery of the inner planet was confirmed[2] in 2018, the discovery of both planets was suspected to be a false positive in 2020, as newer radial velocity data do not support the existence of the planets.[8]
^ abcdMent, Kristo; Fischer, Debra A.; Bakos, Gaspar; Howard, Andrew W.; Isaacson, Howard (2018), "Radial velocities from the N2K Project: 6 new cold gas giant planets orbiting HD 55696, HD 98736, HD 148164, HD 203473, and HD 211810", The Astronomical Journal, 156 (5): 213, arXiv:1809.01228, Bibcode:2018AJ....156..213M, doi:10.3847/1538-3881/aae1f5, S2CID119243619
^Lodieu, N.; Perez-Garrido, A.; Bejar, V. J. S.; Gauza, B.; Ruiz, M. T.; Rebolo, R.; Pinfield, D. J.; Martin, E. L. (2014), "Binary frequency of planet-host stars at wide separations. A new brown dwarf companion to a planet-host star", Astronomy & Astrophysics, A120: 569, arXiv:1408.1208, Bibcode:2014A&A...569A.120L, doi:10.1051/0004-6361/201424210, S2CID118516214