Quantum field theory with a Lie group base manifold
Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group . It is closely related to background independent quantum gravity approaches such as loop quantum gravity , the spin foam formalism and causal dynamical triangulation . Its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields). Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime .
See also
References
Wayback Machine see Sec 6.8 Dynamics: III. Group field theory
Freidel, L. (2005). "Group Field Theory: An Overview". International Journal of Theoretical Physics . 44 (10): 1769–1783. arXiv :hep-th/0505016 . Bibcode :2005IJTP...44.1769F . doi :10.1007/s10773-005-8894-1 . S2CID 119099369 .
Oriti, Daniele (2006). "The group field theory approach to quantum gravity". arXiv :gr-qc/0607032 . Bibcode :2006gr.qc.....7032O .
Oriti, Daniele (2009). "The Group Field Theory Approach to Quantum Gravity: A QFT for the Microstructure of Spacetime" (PDF) . arXiv :0912.2441 .
Geloun, Joseph Ben; Krajewski, Thomas; Magnen, Jacques; Rivasseau, Vincent (2010). "Linearized group field theory and power-counting theorems". Classical and Quantum Gravity . 27 (15): 155012. arXiv :1002.3592 . Bibcode :2010CQGra..27o5012B . doi :10.1088/0264-9381/27/15/155012 . S2CID 29020457 .
Ben Geloun, J.; Gurau, R.; Rivasseau, V. (2010). "EPRL/FK group field theory". Europhysics Letters . 92 (6): 60008. arXiv :1008.0354 . Bibcode :2010EL.....9260008B . doi :10.1209/0295-5075/92/60008 . S2CID 119247896 .
Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam (2009). "Loop quantum cosmology and spin foams". Physics Letters B . 681 (4): 347–352. arXiv :0909.4221 . Bibcode :2009PhLB..681..347A . doi :10.1016/j.physletb.2009.10.042 . S2CID 56281948 .
Fairbairn, Winston J.; Livine, Etera R. (2007). "3D spinfoam quantum gravity: Matter as a phase of the group field theory". Classical and Quantum Gravity . 24 (20): 5277–5297. arXiv :gr-qc/0702125 . Bibcode :2007CQGra..24.5277F . doi :10.1088/0264-9381/24/20/021 . S2CID 119369221 .
Alexandrov, Sergei; Roche, Philippe (2011). "Critical overview of loops and foams". Physics Reports . 506 (3–4): 41–86. arXiv :1009.4475 . Bibcode :2011PhR...506...41A . doi :10.1016/j.physrep.2011.05.002 . S2CID 118543391 .
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo (2013). "Cosmology from Group Field Theory Formalism for Quantum Gravity". Physical Review Letters . 111 (3): 031301. arXiv :1303.3576 . Bibcode :2013PhRvL.111c1301G . doi :10.1103/PhysRevLett.111.031301 . PMID 23909305 . S2CID 14203682 .