In mathematics, the Grothendieck existence theorem, introduced by Grothendieck (1961, section 5), gives conditions that enable one to lift infinitesimal deformations of a scheme to a deformation, and to lift schemes over infinitesimal neighborhoods over a subscheme of a scheme S to schemes over S.
The theorem can be viewed as an instance of (Grothendieck's) formal GAGA.
Illusie, Luc (2005), "Grothendieck's existence theorem in formal geometry with a letter from Jean-Pierre Serre", Fundamental Algebraic Geometry: Grothendieck's FGA Explained, Mathematical surveys and monographs, vol. 123, American Mathematical Society, pp. 179–234, doi:10.1090/SURV/123, ISBN9780821842454.
Kosarew, Siegmund (1987), Grothendieck's existence theorem in analytic geometry and related results, Regensburger mathematische Schriften, vol. 14, Fakultät für Mathematik der Universität Regensburg, ISBN9783882461206.