In particular, Goldie's theorem applies to semiprime right Noetherian rings, since by definition right Noetherian rings have the ascending chain condition on all right ideals. This is sufficient to guarantee that a right-Noetherian ring is right Goldie. The converse does not hold: every right Ore domain is a right Goldie domain, and hence so is every commutative integral domain.
A consequence of Goldie's theorem, again due to Goldie, is that every semiprime principal right ideal ring is isomorphic to a finite direct sum of prime principal right ideal rings. Every prime principal right ideal ring is isomorphic to a matrix ring over a right Ore domain.
Sketch of the proof
This is a sketch of the characterization mentioned in the introduction. It may be found in (Lam 1999, p.324).
If R be a semiprime right Goldie ring, then it is a right order in a semisimple ring:
From the previous observations, R is a right Ore ring, and so its right classical ring of quotients Qr exists. Also from the previous observations, Qr is a semisimple ring. Thus R is a right order in Qr.
If R is a right order in a semisimple ring Q, then it is semiprime right Goldie:
Any right order in a Noetherian ring (such as Q) is right Goldie.
Any right order in a Noetherian semiprime ring (such as Q) is itself semiprime.
Thus, R is semiprime right Goldie.
References
^This may be deduced from a theorem of Mewborn and Winton, that if a ring satisfies the maximal condition on right annihilators then the right singular ideal is nilpotent. (Lam 1999, p.252)
Coutinho, S.C.; McConnell, J.C. (2003). "The quest for quotient rings (of non-commutative Noetherian rings". American Mathematical Monthly. 110 (4): 298–313. CiteSeerX10.1.1.296.8947. doi:10.2307/3647879. JSTOR3647879.
Goldie, A.W. (1958). "The structure of prime rings under ascending chain conditions". Proc. London Math. Soc. 8 (4): 589–608. doi:10.1112/plms/s3-8.4.589.
Goldie, A.W. (1960). "Semi-prime rings with maximal conditions". Proc. London Math. Soc. 10: 201–220. doi:10.1112/plms/s3-10.1.201.