God's algorithm

God's algorithm is a notion originating in discussions of ways to solve the Rubik's Cube puzzle,[1] but which can also be applied to other combinatorial puzzles and mathematical games.[2] It refers to any algorithm which produces a solution having the fewest possible moves. The allusion to the deity is based on the notion that an omniscient being would know an optimal step from any given configuration.

Scope

Definition

The notion applies to puzzles that can assume a finite number of "configurations", with a relatively small, well-defined arsenal of "moves" that may be applicable to configurations and then lead to a new configuration. Solving the puzzle means to reach a designated "final configuration", a singular configuration, or one of a collection of configurations. To solve the puzzle a sequence of moves is applied, starting from some arbitrary initial configuration.

Solution

An algorithm can be considered to solve such a puzzle if it takes as input an arbitrary initial configuration and produces as output a sequence of moves leading to a final configuration (if the puzzle is solvable from that initial configuration, otherwise it signals the impossibility of a solution). A solution is optimal if the sequence of moves is as short as possible. The highest value of this, among all initial configurations, is known as God's number,[3] or, more formally, the minimax value.[4] God's algorithm, then, for a given puzzle, is an algorithm that solves the puzzle and produces only optimal solutions.

Some writers, such as David Joyner, consider that for an algorithm to be properly referred to as "God's algorithm", it should also be practical, meaning that the algorithm does not require extraordinary amounts of memory or time. For example, using a giant lookup table indexed by initial configurations would allow solutions to be found very quickly, but would require an extraordinary amount of memory.[5]

Instead of asking for a full solution, one can equivalently ask for a single move from an initial but not final configuration, where the move is the first of some optimal solution. An algorithm for the single-move version of the problem can be turned into an algorithm for the original problem by invoking it repeatedly while applying each move reported to the present configuration, until a final one is reached; conversely, any algorithm for the original problem can be turned into an algorithm for the single-move version by truncating its output to its first move.

Examples

Well-known puzzles fitting this description are mechanical puzzles such as Rubik's Cube, the Tower of Hanoi, and the 15 puzzle. The one-person game of peg solitaire is also covered, as well as many logic puzzles, such as the missionaries and cannibals problem. These have in common that they can be modeled mathematically as a directed graph, in which the configurations are the vertices, and the moves are the arcs.

Mechanical puzzles

n-Puzzles

The Fifteen puzzle can be solved in 80 single-tile moves[6] or 43 multi-tile moves[7] in the worst case. For its generalization the n-puzzle, the problem of finding an optimal solution is NP-hard,[8] so it is not known whether there is a practical God's algorithm.

Towers of Hanoi

For the Towers of Hanoi puzzle, a God's algorithm is known for any given number of disks. The number of moves increases exponentially with the number of disks ().[9]

Rubik's Cube

A scrambled Rubik's Cube

An algorithm to determine the minimum number of moves to solve Rubik's Cube was published in 1997 by Richard Korf.[10] While it had been known since 1995 that 20 was a lower bound on the number of moves for the solution in the worst case, Tom Rokicki proved in 2010 that no configuration requires more than 20 moves.[11] Thus, 20 is a sharp upper bound on the length of optimal solutions. Mathematician David Singmaster had "rashly conjectured" this number to be 20 in 1980.[4]

Unsolved games

Some well known games with a very limited set of simple well-defined rules and moves have nevertheless never had their God's algorithm for a winning strategy determined. Examples are the board games chess and Go.[12] Both these games have a rapidly increasing number of positions with each move. The total number of all possible positions, approximately 5×1044[13] for chess and 10180 (on a 19×19 board) for Go,[14] is much too large to allow a brute force solution with current computing technology (compare the now solved, with great difficulty, Rubik's Cube at only about 4.3×1019 positions[15]). Consequently, a brute force determination of God's algorithm for these games is not possible. While chess computers have been built that are capable of beating even the best human players, they do not calculate the game all the way to the end. Deep Blue, for instance, searched only 11 moves ahead (counting a move by each player as two moves), reducing the search space to only 1017.[16] After this, it assessed each position for advantage according to rules derived from human play and experience.

Even this strategy is not possible with Go. Besides having hugely more positions to evaluate, no one so far has successfully constructed a set of simple rules for evaluating the strength of a Go position as has been done for chess, though neural networks trained through reinforcement learning can provide evaluations of a position that exceed human ability.[17] Evaluation algorithms are prone to make elementary mistakes[18] so even for a limited look ahead with the goal limited to finding the strongest interim position, a God's algorithm has not been possible for Go.

On the other hand, draughts (checkers) has long been suspected of being "played out" by its expert practitioners.[19] In 2007 Schaeffer et al. proved this to be so by calculating a database of all positions with ten or fewer pieces, providing a God's algorithm for all end games of draughts which was used to prove that all perfectly played games of draughts end in a draw.[20] However, draughts with only 5×1020 positions[21] and even fewer, 3.9×1013, in the database,[22] is a much easier problem to solve –of the same order as Rubik's cube.

The magnitude of the set of positions of a puzzle does not entirely determine whether a God's algorithm is possible. The already solved Tower of Hanoi puzzle can have an arbitrary number of pieces, and the number of positions increases exponentially as . Nevertheless, the solution algorithm is applicable to any size problem, with a running time scaling as .[23]

See also

Notes

  1. ^ Paul Anthony Jones, Jedburgh Justice and Kentish Fire: The Origins of English in Ten Phrases and Expressions, Hachette UK, 2014 ISBN 1472116224.
  2. ^ See e.g. Rubik's Cubic Compendium by Ernö Rubik, Tamás Varga, Gerzson Kéri, György Marx, and Tamás Vekerdy (1987, Oxford University Press, ISBN 0-19-853202-4), p. 207: "...the Pyraminx is much simpler than the Magic Cube... Nicholas Hammond has shown that God's Algorithm is at most 21 moves (including the four trivial vertex moves). [More recently, three people have found God's Algorithm. The maximal number of moves is 15 (including the four vertex moves).]"
  3. ^ Jonathan Fildes (August 11, 2010). "Rubik's Cube quest for speedy solution comes to an end". BBC News.
  4. ^ a b Singmaster, p. 311, 1980
  5. ^ Joyner, page 149
  6. ^ A. Brüngger, A. Marzetta, K. Fukuda and J. Nievergelt, The parallel search bench ZRAM and its applications, Annals of Operations Research 90 (1999), pp. 45–63.
  7. ^ Norskog, Bruce; Davidson, Morley (December 8, 2010). "The Fifteen Puzzle can be solved in 43 moves". Domain of the Cube Forum. Retrieved March 15, 2022.
  8. ^ Daniel Ratner, Manfred K. Warmuth (1986). "Finding a shortest solution for the N × N extension of the 15-puzzle is intractable". in Proceedings AAAI-86. National Conference on Artificial Intelligence, 1986. pp. 168–172.
  9. ^ Rueda, Carlos (August 2000). "An optimal solution to the Towers of Hanoi Puzzle". Universidad Autónoma de Manizales [Autonomous University of Manizales]. Manizales, Colombia. Archived from the original on 2004-06-05. Retrieved March 15, 2022.
  10. ^ Richard E. Korf, "Finding optimal solutions to Rubik's Cube using pattern databases", Proc. Natl. Conf. on Artificial Intelligence (AAAI-97), Providence, Rhode Island, Jul 1997, pp. 700–705.
  11. ^ Rokicki, Tomas; Kociemba, Herbert; Davidson, Morley; Dethridge, John (2010). "God's Number is 20". Cube20.org. Retrieved March 15, 2022.
  12. ^ Rothenberg, p. 11
  13. ^ John Tromp. "Chess Position Ranking". GitHub.
  14. ^ Baum, p. 199
  15. ^ Singmaster, 1981
  16. ^ Baum, p. 188
  17. ^
    • Baum, p. 197
    • Mohammadian, p. 11
  18. ^ Baum, p.197
  19. ^ Fraser & Hannah, p. 197
  20. ^ Moore & Mertens, chapter 1.3, "Playing chess with God"
  21. ^ Schaeffer et al., p. 1518
  22. ^ Moore & Mertens, "Notes" to chapter 1
  23. ^ Rueda

References

  • Baum, Eric B., What is Thought?, MIT Press, 2004 ISBN 0262025485.
  • Davis, Darryl N.; Chalabi, T.; Berbank-Green, B., "Artificial-life, agents and Go", in Mohammadian, Masoud, New Frontiers in Computational Intelligence and its Applications, pp. 125–139, IOS Press, 2000 ISBN 9051994761.
  • Fraser, Rober (ed); Hannah, W. (ed), The Draught Players' Weekly Magazine, vol. 2, Glasgow: J H Berry, 1885.
  • Joyner, David (2002). Adventures in Group Theory. Johns Hopkins University Press. ISBN 0-8018-6947-1.
  • Moore, Cristopher; Mertens, Stephan, The Nature of Computation, Oxford University Press, 2011 ISBN 0191620807.
  • Rothenberg, Gadi, Catalysis, God's Algorithm, and the Green Demon, Amsterdam University Press, 2009 ISBN 9056295896.
  • Schaeffer, Jonathan; Burch, Neil; Björnsson, Yngvi; Kishimoto, Akihiro; Müller, Martin; Lake, Robert; Lu, Paul; Sutphen, Steve (14 September 2007). "Checkers Is Solved" (PDF). Science. 317 (5844): 1518–1522. Bibcode:2007Sci...317.1518S. doi:10.1126/science.1144079. ISSN 0036-8075. PMID 17641166.
  • Singmaster, David, Notes on Rubik's Magic Cube, Penguin, 1981 ISBN 0-907395-00-7.
  • Singmaster, David, "The educational value of the Hungarian 'Magic Cube'", Proceedings of the Fourth International Congress on Mathematical Education, held in Berkeley, California, 10–16 August 1980, pp. 307–312, Birkhauser Boston Inc, 1983 ISBN 978-0-8176-3082-9.


Read other articles:

Peter StormarePeter Stormare at Gröna Lund in 2008LahirRolf Peter Ingvar Storm27 Agustus 1953 (umur 70)Kumla, SwedenPekerjaanActor, voice actor, theatre director, playwright, musicianTahun aktif1978–presentSuami/istriKaren Sillas(1989–2006; divorced)Toshimi Stormare(2008–present)Anak1Situs webwww.stormare.se Rolf Peter Ingvar Storm atau dikenal dengan nama Peter Stormare (pengucapan bahasa Swedia: [ˈpeːtɛr ²stɔrːmarɛ] simakⓘ) (lahir 27 Agustus 1953) adalah...

 

 

Lapangan Terbang BerteauxBagian dari Angkatan Udara Kedua BelasKoordinat36°04′40″N 006°29′15″E / 36.07778°N 6.48750°E / 36.07778; 6.48750 (Lapangan Terbang Berteaux)Jenislapangan terbang militerInformasi situsDikontrol olehPasukan Udara Angkatan Darat Amerika SerikatSejarah situsDibangun1942DigunakanDesember 1942-Maret 1944 Lapangan Terbang Berteaux Lokasi Lapangan Terbang Berteaux, Aljazair Lapangan Terbang Berteaux adalah lapangan terbang mil...

 

 

Dewan Perwakilan RakyatPapua BaratPeriode 2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahDidirikan2003Sesi baru dimulai2 Oktober 2019PimpinanKetuaOrgenes Wonggor (Golkar) sejak 5 Desember 2019 Wakil Ketua IRenly Mansawan (NasDem) sejak 5 Desember 2019 Wakil Ketua IISaleh Siknun (PDI-P) sejak 5 Desember 2019 Wakil Ketua IIIYongki Roberto Fonataba (Demokrat) sejak 5 Desember 2019 KomposisiAnggota56Partai & kursiPemerintah (19)   PDI-P (7)   NasDe...

العلاقات الإكوادورية السريلانكية الإكوادور سريلانكا   الإكوادور   سريلانكا تعديل مصدري - تعديل   العلاقات الإكوادورية السريلانكية هي العلاقات الثنائية التي تجمع بين الإكوادور وسريلانكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجع...

 

 

Rudolph W. Giuliani Wali kota New York City 107Masa jabatan1 Januari 1994 – 31 Desember 2001 PendahuluDavid N. DinkinsPenggantiMichael R. Bloomberg Informasi pribadiLahir28 Mei 1944 (umur 79)Brooklyn, New YorkPartai politikRepublikSuami/istriJudith NathanAlma materManhattan CollegeSunting kotak info • L • B Rudolph William Louis Rudy Giuliani, KBE (lahir 28 Mei 1944) adalah politikus, pengacara, dan pengusaha AS dari negara bagian New York. Ia adalah mantan w...

 

 

Ferenc Puskás Puskás di 1971Informasi pribadiTanggal lahir (1927-04-01)1 April 1927Tempat lahir Budapest, HungariaTanggal meninggal 17 November 2006(2006-11-17) (umur 79)Tempat meninggal Budapest, HungariaTinggi 172 cm (5 ft 8 in)Posisi bermain Penyerang[1]Karier senior*Tahun Tim Tampil (Gol)1943–1956 Budapest Honvéd[2] 349 (358)1958–1966 Real Madrid 180 (156)1943–1966 Total 529 (514)Tim nasional1945–1956 Hungaria 85 (84)1961–1962 Spanyol 4 (0...

H. Soedirman Komandan SSKADMasa jabatan1962–1966 PendahuluKolonel Inf. Suadi SuromihardjoPenggantiMayjen TNI SoewartoPanglima T&T V/BrawijayaMasa jabatan1952–1956 PendahuluKolonel Inf. Dr. SoewondoPenggantiKolonel Inf. M. SarbiniKomandan Brigade I RonggolaweMasa jabatan1948–1953 PendahuluLetkol Inf. SoenartoPenggantiLetkol Inf. Soerachman Informasi pribadiLahir15 Agustus 1913Ngringinrejo, Kalitidu, Bojonegoro, Jawa Timur, Hindia BelandaMeninggal1993JakartaSuami/istriNy. Masrikah bin...

 

 

Football tournament 1919 South American Championship of NationsPosterTournament detailsHost countryBrazilDates11–29 MayTeams4 (from 1 confederation)Venue(s)1 (in 1 host city)Final positionsChampions Brazil (1st title)Runners-up UruguayThird place ArgentinaFourth place ChileTournament statisticsMatches played7Goals scored27 (3.86 per match)Top scorer(s) Arthur Friedenreich Neco (4 goals each)← 1917 1920 → International football competition ...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Nataša Pirc MusarPirc Musar, 2022 Presiden SloveniaMulai menjabat22 Desember 2022MenggantikanBorut PahorKomisaris Informasi Pertama SloveniaMasa jabatan17 Juli 2004 – 16 Juli 2014PenggantiMojca Prelesnik Informasi pribadiLahirNataša Pirc0...

Aldo Fabrizi Aldo Fabrizi, all'anagrafe Aldo Fabbrizi[1] (Roma, 1º novembre 1905 – Roma, 2 aprile 1990), è stato un attore, regista, sceneggiatore, produttore, comico e poeta italiano. Attore intenso e versatile, nel corso della sua carriera ha avuto modo di cimentarsi in ruoli sia comici sia drammatici. È stato inoltre, insieme ad Alberto Sordi e Anna Magnani, una personalità essenziale per quanto riguarda la rappresentazione della romanità nel cinema[2]. Indice 1 Biog...

 

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

 

أندرياس سكوف أولسن معلومات شخصية الميلاد 29 ديسمبر 1999 (العمر 24 سنة)هيليرود[1]  الطول 1.87 م (6 قدم 1 1⁄2 بوصة) مركز اللعب وسط الجنسية مملكة الدنمارك  معلومات النادي النادي الحالي كلوب بروج الرقم 7 مسيرة الشباب سنوات فريق Alsønderup SG&I 2012–2018 نوردشيلاند المسيرة ...

Jadranko Prlić,Jadranko Prlić (lahir 10 Juni 1959) adalah mantan jurnalis dan politikus Kroasia, dosen dan professor bidang ekonomi, mantan Wakil Presiden Republik Bosnia-Herzegovina, Presiden ad interim Republik Bosnia-Herzegovina, Kepala Departemen Keuangan Dewan Pertahanan Kroasia (Croatian Defence Council, HVO), dan Presiden badan eksekutif, administratif dan militer HVO. Pada bulan Agustus 1993 Prlić menjadi Perdana Menteri Komunitas Kroasia Herzeg-Bosnia, kemudian Wakil Presiden dan ...

 

 

Standard & Poor'sJenisAnak perusahaan dari McGraw-Hill CompaniesIndustriLembaga pemeringkat kreditDidirikan1941PendiriPenggabungan usaha dari Poor's Publishing dan Standard StatisticsKantorpusatNew York, AmerikaWilayah operasiJasa keuanganProdukLaporan peringkat kreditDivisiCapital IQSitus webwww.standardandpoors.com Standard & Poor's atau juga dikenal dengan sebutan (S&P) adalah salah satu anak perusahaan dari McGraw-Hill yang merupakan perusahaan pemeringkat atas saham dan oblig...

 

 

Emil Nolde BiografiKelahiran(de) Hans Emil Hansen 7 Agustus 1867 Nolde Kematian13 April 1956 (88 tahun)Seebüll Tempat pemakamanNolde Museum Seebüll Galat: Kedua parameter tahun harus terisi! Data pribadiKelompok etnikOrang Denmark PendidikanAcademy of Fine Arts, Karlsruhe (1889–1890)Académie Julian KegiatanSpesialisasiSeni lukis dan cat air Pekerjaanpelukis, Xilografer, pemahat, architectural draftsperson, seniman grafis, pembuat grafis, fotografer, lithog...

Ridwan Zakariah menyerahkan bantuan (cropped) Muhammad Ridwan Zakariah (lahir 29 Desember 1950)[1] adalah seorang birokrat Indonesia. Ia lahir pada tahun 1950 di desa terpencil bernama Desa Lengo, Buton Utara (Butur). Kemudian Butur diduduki pemberontak DI-TII pada Februari 1956, kondisi tersebut membuat dia dan keluarganya pindah dari kampung halamannya ke Kota Raha. Di kota ini, ia menyelesaikan pendidikan SD, SMP, sampai SMA. Setelah lulus SMA, ia kemudian melanjutkan pendidikannya...

 

 

نادي آياياوادي يونايتد تأسس عام 2009  البلد ميانمار  الدوري دوري ميانمار الوطني  تعديل مصدري - تعديل   نادي آياياوادي يونايتد لكرة القدم هو نادي كرة قدم بورمي مقره هو ملعب باثين، في باثين، ميانمار.[1] تأسس الفريق رسميا في عام 2009. ويلعب في ملعب ثوفونا في يانغون. وه�...

 

 

Duta Besar Amerika Serikat untuk SiprusSegel Kementerian Dalam Negeri Amerika SerikatDicalonkan olehPresiden Amerika SerikatDitunjuk olehPresidendengan nasehat Senat Berikut ini adalah daftar Duta Besar Amerika Serikat untuk Siprus Daftar Fraser Wilkins Taylor G. Belcher David H. Popper Robert J. McCloskey Rodger P. Davies William R. Crawford, Jr. Galen L. Stone Raymond C. Ewing Richard Wood Boehm Bill K. Perrin Robert E. Lamb – Career FSO Title: Ambassador Richard A. Boucher Kenneth C. Bri...

San Girolamo penitenteAutoreLorenzo Lotto Data1506 circa Tecnicaolio su tavola Dimensioni48×40 cm UbicazioneLouvre, Parigi Dettaglio San Girolamo penitente è un dipinto a olio su tavola (48x40 cm) di Lorenzo Lotto, databile al 1506 circa e conservato nel Museo del Louvre a Parigi. L'opera è firmata (Lotus) e datata, ma l'ultima cifra (150.) è illeggibile. Indice 1 Storia 2 Descrizione e stile 3 Bibliografia 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni Storia L'opera viene...

 

 

Cet article est une ébauche concernant la Belgique et le Concours Eurovision de la chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Belgiqueau Concours Eurovision 1996 Données clés Pays  Belgique Chanson Liefde is een kaartspel Interprète Lisa del Bo Compositeur John Terra, Siirak Brogden Parolier Daniël Ditmar Langue Néerlandais Sélection nationale Radiodiffuseur BRTN Type de sélection Fina...