Geometrography

Cover of Lemoine's "Géométrographie"

In the mathematical field of geometry, geometrography is the study of geometrical constructions.[1] The concepts and methods of geometrography were first expounded by Émile Lemoine (1840–1912), a French civil engineer and a mathematician, in a meeting of the French Association for the Advancement of the Sciences held at Oran in 1888. [1] Lemoine later expanded his ideas in another memoir read at the Pau meeting of the same Association held in 1892.[2]

It is well known in elementary geometry that certain geometrical constructions are simpler than certain others. But in many case it turns out that the apparent simplicity of a construction does not consist in the practical execution of the construction, but in the brevity of the statement of what has to be done. Can then any objective criterion be laid down by which an estimate may be formed of the relative simplicity of several different constructions for attaining the same end? Lemoine developed the ideas of geometrography to answer this question.[1] The question of the ubiquity of a construction is also raised. Whether or not a construction, regardless of simplicity, can be applied in all or most conditions, or just in the special cases, is an important consideration.

Basic ideas

In developing the ideas of geometrography, Lemoine restricted himself to Euclidean constructions using rulers and compasses alone. According to the analysis of Lemoine, all such constructions can be executed, as a sequence of operations selected form a fixed set of five elementary operations. The five elementary operations identified by Lemoine are the following:

Elementary operations in a geometrical construction

Sl. No. Operation Notation
for operation
1 To place the edge of the ruler in coincidence with a point R1
2 To draw a straight line R2
3 To put a point of the compasses on a determinate point C1
4 To put a point of the compasses on an indeterminate point of a line    C2
5 To describe a circle C3

In a geometrical construction the fact that an operation X is to be done n times is denoted by the expression nX. The operation of placing a ruler in coincidence with two points is indicated by 2R1. The operation of putting one point of the compasses on a determinate point and the other point of the compasses on another determinate point is 2C1.

Every geometrical construction can be represented by an expression of the following form

l1R1 + l2R2 + m1C1 + m2C2 + m3C3.

Here the coefficients l1, etc. denote the number of times any particular operation is performed.

Coefficient of simplicity

The number l1 + l2 + m1 +m2 + m3 is called the coefficient of simplicity, or the simplicity of the construction. It denotes the total number of operations.

Coefficient of exactitude

The number l1 + m1 + m2 is called the coefficient of exactitude, or the exactitude of the construction; it denotes the number of preparatory operations, on which the exactitude of the construction depends.

Examples

Lemoine applied his scheme to analyze more than sixty problems in elementary geometry.[1]

  • The construction of a triangle given the three vertices can be represented by the expression 4R1 + 3R2.
  • A certain construction of the regular heptadecagon involving the Carlyle circles can be represented by the expression 8R1 + 4R2 + 22C1 + 11C3 and has simplicity 45.[3]

References

  1. ^ a b c d J. S. Mackay (1893). "The Geometrography of Euclid's Problems". Proceedings of the Edinburgh Mathematical Society. 12: 2–16. doi:10.1017/S0013091500001565. Retrieved 5 November 2011.
  2. ^ Lemoine, Émile. "Géométrographie ou Art des constructions géométriques". Gallica Bibliotheque Numerique. Retrieved 5 November 2011.
  3. ^ Weisstein, Eric W. "Heptadecagon." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Heptadecagon.html

Further reading

Read other articles:

Distrik Martapura, Distrik Riam Kanan, dan Distrik Riam Kiwa Peta Zuid en Ooster Afdeeling van Borneo, Distrik Riam Kiwa no. III Peta Distrik Riam Kiwa dan sekitarnya Distrik Riam Kiwa atau Doekoe Kiwa adalah bekas distrik (kawedanan) yang merupakan bagian dari wilayah administratif Onderafdeeling Riam Kiwa dan Riam Kanan pada zaman kolonial Hindia Belanda dahulu. Distrik Riam Kiwa pernah dipimpin oleh Kepala Distrik (districtshoofd van Riam Kiwa) yaitu Tahun Districtshoofd Panghoeloe 1861 K...

 

Pemilihan umum Gubernur Jawa Tengah 20182013202427 Juni 2018Kehadiran pemilih67,64%Kandidat   Calon Ganjar Pranowo Sudirman Said Partai PDI-P PKS Pendamping Taj Yasin Maimoen Ida Fauziyah Suara rakyat 10.362.694 7.267.993 Persentase 58,78% 41,22% Peta persebaran suara Peta Pulau Jawa yang menyoroti Jawa Tengah Gubernur dan Wakil Gubernur petahanaGanjar Pranowo dan Heru Sudjatmoko PDI-P Gubernur dan Wakil Gubernur terpilih Ganjar Pranowo dan Taj Yasin Maimoen PDI-P Pemilihan umum Gu...

 

2003 Serbian presidential election ← December 2002 16 November 2003 2004 → Turnout38.79% ( 6.37 pp)   Candidate Tomislav Nikolić Dragoljub Mićunović Party SRS DC Alliance DOS Popular vote 1,166,896 893,906 Percentage 47.87% 36.67% President before election Nataša Mićić (acting) GSS Elected President Election results annulledNataša Mićić (acting) GSS Presidential elections were held in Serbia on 16 November 2003,[1] a month before the Dece...

Pengantin Jawa gaya Solo Basahan mengenakan tujuh kembang goyang Kembang goyang (kata serapan dari Jawa: ꦏꦼꦩ꧀ꦧꦁ​ꦒꦺꦴꦪꦁ, translit. kêmbang goyang) adalah perhiasan yang dipasangkan di rambut atau sanggul (konde) dan dapat bergerak-gerak apabila digerakkan karena memiliki pegas yang dipasangkan padanya. Hiasan kembang goyang dibuat dari logam (kuningan, tembaga, perak, atau emas) dan kadang-kadang diberi hiasan batu permata. Perhiasan ini populer dikenakan dalam...

 

1961 American spaceflight of the Mercury program Mercury-Atlas 5An Atlas rocket launches the Mercury-Atlas 5 into orbit, November 29, 1961Mission typeTest flightOperatorNASAHarvard designation1961 Alpha Iota 1COSPAR ID1961-033A SATCAT no.208Mission duration3 hours, 20 minutes, 59 secondsDistance travelled81,902 kilometers (50,892 mi)Orbits completed2 Spacecraft propertiesSpacecraftMercury No.9ManufacturerMcDonnell AircraftLaunch mass1,331 kilograms (2,934 lb) CrewCrew...

 

Cet article est une ébauche concernant Londres. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Alexandra PalacePrésentationType Lieu pour des événements (d), centre communautaire, installation sportive, studio de télévision, théâtreFondation 1875Architecte Owen JonesOuverture 1873, 1875Propriétaire Haringey London Borough Council (en)Patrimonialité Monument classé de Grade II (en) (1996)Site web...

Kontes Lagu Eurovision 2014 #JoinUs Semi-final 1 6 Mei 2014 Semi-final 2 8 Mei 2014 Final 10 Mei 2014 Pembawa Acara Lisa RønneNikolaj KoppelPilou Asbæk Direktur Pernille Gaardbo Penyiar Tuan Rumah DR Tempat B&W Hallerne, Copenhagen, Denmark[1] Lagu pemenang Austria Rise Like A Phoenix Jumlah kontestan 37[2] Partisipasi pertama Tidak ada Kembali ke Kontes Polandia Portugal Tidak mengikuti kontes Bulgaria Kroasia Siprus Serbia Pembuka Semi-final 1: Only Teardrops dipersem...

 

Official anthem of the UEFA Champions League UEFA Champions League AnthemOfficial anthem of UEFA Champions LeagueLyricsTony Britten, 1992MusicTony Britten, adapted from George Frideric Handel, 1992Adopted1992Audio sampleThe last two verses of the UEFA Champions League Anthemfilehelp The UEFA Champions League Anthem, officially titled simply Champions League, is the official anthem of the UEFA Champions League, written by English composer Tony Britten in 1992, and based on George Frideric Hand...

 

Economy of GuineaCurrencyFranc (GNF)Fiscal yearCalendar yearTrade organisationsAU, WTOStatisticsGDP $23.33 billion (nominal, 2023)[1] $30.864 billion (PPP, 2018)[1] GDP growth 10.0% (2017) 5.8% (2018) 5.9% (2019e) 6.0% (2020f)[2] GDP per capita $1910 (nominal, 2018 est.)[1] $2,322 (PPP, 2018 est.)[1] Inflation (CPI)9.826% (2018)[1]Human Development Index 0.465 low (2021)[3] (182nd) 0.299 low IHDI (2021)[...

1970 film by Mel Stuart This article is about the 1970 film. For the 1977 musical, see I Love My Wife. I Love My WifeI Love My...WifeDirected byMel StuartWritten byRobert KaufmanProduced byStan MarguliesRobert Kaufman(associate producer)David L. Wolper(executive producer)StarringElliott GouldBrenda VaccaroAngel TompkinsMusic byLalo SchifrinProductioncompanyWolper Pictures Ltd.Distributed byUniversal PicturesRelease dateDecember 21, 1970 (New York)[1]Running time98 min.CountryUnited St...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) منتخب أرمينيا تحت 17 سنة لكرة القدم بلد الرياضة أرمينيا  الفئة كرة قدم تحت 17 سنة للرجال  [لغات أخرى]&#...

Pour l’article homonyme, voir Hind Bensari. Cheikh Larbi Bensari Cheikh Larbi Bensari au rabâb.Informations générales Nom de naissance Larbi Bensari Naissance Présumé en 1867Ouled Sid el Hadj, Tlemcen, Algérie Décès 1964Tlemcen, Algérie Activité principale Auteur-compositeur Genre musical Musique arabo-andalouse (école de Tlemcen (Gharnati), école d'Alger (Sanâa)), Hawzi, 'Aroubi, Madih, Gherbi. Instruments Rabâb modifier Cheikh Larbi Bensari, né à Ouled Sid el Hadj, dans l...

 

American professional golfer Danielle KangKang at the 2013 Women's British OpenPersonal informationFull nameDanielle Grace Kang[1]Born (1992-10-20) October 20, 1992 (age 31)San Francisco, California, U.S.Height5 ft 6 in (1.68 m)Sporting nationality United StatesResidenceLas Vegas, Nevada, U.S.CareerCollegePepperdine University(two years)Turned professional2011Current tour(s)LPGA Tour (joined 2012)Professional wins6Number of wins by tourLPGA Tour6Best results i...

 

Public university system in North Dakota NDSUUNDDSUMayville StateMinot StateVCSUBSCLRSCDCBNDSCSWSCclass=notpageimage| North Dakota University System locations. Black: Research Universities; Red: Regional Universities; Yellow: Community Colleges. The North Dakota University System (NDUS) is the public system of higher education and policy coordination entity in the U.S. state of North Dakota. The system includes all public institutions in the state including two research universities, four reg...

Empedu (material kuning) dalam biopsi jaringan hati pada saat stasis empedu (kolestasis). Pewarnaan hematoxylin. Empedu adalah cairan bersifat basa yang pahit dan berwarna hijau kekuningan karena mengandung pigmen bilirubin, biliverdin, dan urobilin, yang disekresikan oleh hepatosit hati pada sebagian besar vertebrata. Empedu digunakan untuk membantu pencernaan lemak di usus dua belas jari. Dalam manusia, setiap hari sekitar 400-800cc cairan empedu disekresikan oleh hati di mana sekresinya be...

 

Jan Erik VoldBiographieNaissance 18 octobre 1939 (84 ans)Oslo (Norvège)Nationalité norvégienneActivités Poète, musicien, écrivain, traducteur, biographePériode d'activité 2014Père Ragnar Vold (en)Fratrie Karin Beate Vold (d)Conjoint Sidsel Paaske (d) (jusqu'en 1980)Autres informationsLabels Hot Club Records (en), Philips Records, Polydor RecordsDistinctions Liste détailléePrix Tarjei Vesaas (1965)Dotation Gyldendal (1968)Prix Aschehoug (1981)Prix Dobloug (1988)Prix de traducti...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2016) قناة شروزبريمعلومات عامةالبلد المملكة المتحدة تعديل - تعديل مصدري - تعديل ويكي بيانات الجزء المعلق من قناة شروزبري من الحديد المصبوب. من تصميم المهندس توما�...

Soviet interceptor aircraft This article is about the supersonic Su-15 Flagon. For the earlier subsonic interceptor, see Sukhoi Su-15 (1949). Su-15 Su-15 with R-98MR missilesGeneral informationTypeInterceptor aircraftNational originSoviet UnionManufacturerSukhoiStatusRetired from military servicePrimary usersSoviet Air Defence Forces (historical) Russian Air Force (historical) Ukrainian Air Force (historical) Number built1,290HistoryManufactured1965–1979Introduction date1965First flight30 M...

 

Mahanadi River Delta - NASA satellite view Mahanadi delta with nearby reservoirs Mahanadi River Delta in India is a basin of deposit that drains a large land mass of the Indian subcontinent into the Bay of Bengal. The alluvial valley is wide and relatively flat with a meandering river channel that changes its course.[1] The Mahanadi River flows slowly for 900 kilometres (560 mi) and has an estimated drainage area of 132,100 square kilometres (51,000 sq mi).[2] ...