In mathematics, genus (pl.: genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface.[1] A sphere has genus 0, while a torus has genus 1.
Topology
Orientable surfaces
The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected.[2] It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic, via the relationship for closed surfaces, where is the genus. For surfaces with boundary components, the equation reads .
In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense).[3] A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the relevant sort.
A torus has genus one, as does the surface of a coffee mug with a handle. This is the source of the joke "topologists are people who can't tell their donut from their coffee mug."
The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k, where k is the non-orientable genus.
The genus of a knotK is defined as the minimal genus of all Seifert surfaces for K.[4] A Seifert surface of a knot is however a manifold with boundary, the boundary being the knot, i.e.
homeomorphic to the unit circle. The genus of such a surface is defined to be the genus of the two-manifold, which is obtained by gluing the unit disk along the boundary.
Handlebody
The genus of a 3-dimensional handlebody is an integer representing the maximum number of cuttings along embedded disks without rendering the resultant manifold disconnected. It is equal to the number of handles on it.
The genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n handles (i.e. an oriented surface of the genus n). Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing.
The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)
The Euler genus is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps or on a sphere with n/2 handles.[5]
In topological graph theory there are several definitions of the genus of a group. Arthur T. White introduced the following concept. The genus of a group G is the minimum genus of a (connected, undirected) Cayley graph for G.
The genus is multiplicative for all bundles on spinor manifolds with a connected compact structure if is an elliptic integral such as for some This genus is called an elliptic genus.
The Euler characteristic is not a genus in this sense since it is not invariant concerning cobordisms.
Biology
Genus can be also calculated for the graph spanned by the net of chemical interactions in nucleic acids or proteins. In particular, one may study the growth of the genus along the chain. Such a function (called the genus trace) shows the topological complexity and domain structure of biomolecules.[9]
^Hirzebruch, Friedrich (1995) [1978]. Topological methods in algebraic geometry. Classics in Mathematics. Translation from the German and appendix one by R. L. E. Schwarzenberger. Appendix two by A. Borel (Reprint of the 2nd, corr. print. of the 3rd ed.). Berlin: Springer-Verlag. ISBN978-3-540-58663-0. Zbl0843.14009.
^Charles Rezk - Elliptic cohomology and elliptic curves (Felix Klein lectures, Bonn 2015. Department of Mathematics, University of Illinois, Urbana, IL)
This set index article includes a list of related items that share the same name (or similar names). If an internal link incorrectly led you here, you may wish to change the link to point directly to the intended article.