Gaussian correlation inequality

The gaussian correlation inequality states that probability of hitting both circle and rectangle with a dart is greater than or equal to the product of the individual probabilities of hitting the circle or the rectangle.

The Gaussian correlation inequality (GCI), formerly known as the Gaussian correlation conjecture (GCC), is a mathematical theorem in the fields of mathematical statistics and convex geometry.

The statement

The Gaussian correlation inequality states:

Let be an n-dimensional Gaussian probability measure on , i.e. a multivariate normal distribution, centered at the origin. Then for all convex sets that are symmetric about the origin,

As a simple example for n=2, one can think of darts being thrown at a board, with their landing spots in the plane distributed according to a 2-variable normal distribution centered at the origin. (This is a reasonable assumption for any given darts player, with different players being described by different normal distributions.) If we now consider a circle and a rectangle in the plane, both centered at the origin, then the proportion of the darts landing in the intersection of both shapes is no less than the product of the proportions of the darts landing in each shape. This can also be formulated in terms of conditional probabilities: if you're informed that your last dart hit the rectangle, then this information will increase your estimate of the probability that the dart hit the circle.

History

A special case of the inequality was conjectured in 1955;[1] further development was given by Olive Jean Dunn in 1958.[2][3] The general case was stated in 1972, also as a conjecture.[4] The case of dimension n=2 was proved in 1977[5] and certain special cases of higher dimension have also been proven in subsequent years.[6]

The general case of the inequality remained open until 2014, when Thomas Royen, a retired German statistician, proved it using relatively elementary tools.[7] In fact, Royen generalized the conjecture and proved it for multivariate gamma distributions. The proof did not gain attention when it was published in 2014, due to Royen's relative anonymity and the fact that the proof was published in a predatory journal.[2][8] Another reason was a history of false proofs (by others) and many failed attempts to prove the conjecture, causing skepticism among mathematicians in the field.[2]

The conjecture, and its solution, came to public attention in 2017, when other mathematicians described Royen's proof in a mainstream publication[9] and popular media reported on the story.[2][10][11]

References

  1. ^ Dunnett, C. W.; Sobel, M. (1955). "Approximations to the probability integral and certain percentage points of a multivariate analogue of Student's t -distribution". Biometrika. 42 (1–2): 258–267. doi:10.1093/biomet/42.1-2.258. ISSN 0006-3444.
  2. ^ a b c d Wolchover, Natalie (March 28, 2017). "A Long-Sought Proof, Found and Almost Lost". QUANTA magazine. Retrieved April 4, 2017.
  3. ^ Schechtman, G.; Schlumprecht, Th.; Zinn, J. (January 1998). "On the Gaussian measure of the intersection". The Annals of Probability. 26 (1): 346–357. doi:10.1214/aop/1022855422. ISSN 0091-1798. S2CID 119824731.
  4. ^ Das Gupta, S.; Eaton, M. L.; Olkin, I.; Perlman, M.; Savage, L. J.; Sobel, M. (1972). Inequalities on the probability content of convex regions for elliptically contoured distributions. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Vol. II: Probability theory. Berkeley, California: Univ. California Press. pp. 241–265.
  5. ^ Pitt, Loren D. (1977). "A Gaussian Correlation Inequality for Symmetric Convex Sets". The Annals of Probability. 5 (3): 470–474. doi:10.1214/aop/1176995808.
  6. ^ Harge, Gilles (1999). "A Particular Case of Correlation Inequality for the Gaussian Measure" (PDF). The Annals of Probability. 27 (4): 1939–1951. doi:10.1214/aop/1022874822. S2CID 118789169.
  7. ^ Royen, Thomas (November 2014). "A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions". Far East Journal of Theoretical Statistics. 48 (2): 139–145. arXiv:1408.1028.
  8. ^ "Pushpa Publishing House". www.pphmj.com. Retrieved 4 July 2017.
  9. ^ Latała, R.; Matlak, D. (2017). "Royen's Proof of the Gaussian Correlation Inequality". Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics. Vol. 2169. pp. 265–275. arXiv:1512.08776. doi:10.1007/978-3-319-45282-1_17. ISBN 978-3-319-45281-4. S2CID 36992343.
  10. ^ Farand, Chloe (2017-04-03). "Retired man solves one of hardest maths problems in the world and no one notices". The Independent. Retrieved 2017-04-04.
  11. ^ Dambeck, Holger (2017-04-04). "Erfolg mit 67 Jahren: Der Wunderopa der Mathematik". SPIEGEL ONLINE. Retrieved 2017-04-04.

Read other articles:

Grand Prix of MontrealIndyCar / CART / Champ CarTempatCircuit Gilles Villeneuve, Montreal, Quebec, CanadaLomba pertama1984Lomba terakhir2006Jarak tempuh181.503 miJumlah putaran67 lapsNama sebelumnyaMolson Indy 300 (1984–1986)Molson Indy Montreal (2002–2005)Terbanyak menang(pengemudi)Tidak ada pemenang berulangTerbanyak menang(tim)Newman/Haas Racing (3)Terbanyak menang(pabrikan)Lola (6) Grand Prix Montreal adalah balapan mobil tahunan di Montreal, Quebec pada kalender Champ Car World Serie...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini membutuhkan penyuntingan lebih lanjut mengenai tata bahasa, gaya penulisan, hubungan antarparagraf, nada penulisan, atau ejaan. Anda dapat membantu untuk menyuntingnya. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong ...

 

Four Horsemen of the Apocalypse (Empat Penunggang Kuda dalam Kitab Wahyu), lukisan karya Victor Vasnetsov (1887). Anak Domba Allah terlihat di bagian atas. Eskatologi Kristen Pandangan eskatologi Berbagai kepercayaan Preterisme Idealisme Historisisme Futurisme Milennium Amilenialisme Postmilenialisme Premilenialisme Pengangkatan sebelum murka Pengangkatan setelah penganiayaan Dispensasionalisme Teks Alkitab Injil sinoptik Kotbah di atas Bukit Zaitun Domba dan Kambing Kitab Daniel Nubuat 70 x ...

Arab Masyriqالمشرق العربيDemonimMasyriqiNegaraArab Saudi, Bahrain, Iraq, Kuwait, Libanon, Mesir, Oman, Palestina, Qatar, Somalia, Sudan, Suriah, UEA, Yaman, YordaniaBahasaBahasa Arab Arab Masyriq (Arab: المشرق العربي, Al-Masyriq al-'Arabi) merupakan suatu kawasan bagian dari Dunia Arab yang terdiri dari negara-negara seperti Arab Saudi, Iraq, Kuwait, Libanon, Mesir, Oman, Palestina, Somalia, Sudan, Suriah, Uni Emirat Arab, Yaman, dan Yordania.[1] Secara kia...

 

Artikel ini bukan mengenai Cinta Anak Cucu Adam. Anak Cucu AdamGenre Drama Religi PembuatSinemArtDitulis oleh Danny Zuko Deni Christantra Twidi Ningtyas Skenario Danny Zuko Deni Christantra SutradaraSharad SharanPemeran Sahrul Gunawan Marshanda Alyssa Soebandono Egi John Foreisythe drg. Fadly Tetty Liz Indriati Nessa Sadin Sissy Priscillia Johan Jehan Yadi Timo Chacha Frederica Rama Michael Zora Vidyanata Handika Pratama Rezky Aditya Lagu pembukaAstaghfirullah oleh MarshandaLagu penutupAstagh...

 

Benzodiazepine medication ClorazepateClinical dataTrade namesTranxene, Tranxilium, Novo-ClopateOther namesClorazepate dipotassiumAHFS/Drugs.comMonographMedlinePlusa682052Routes ofadministrationOralATC codeN05BA05 (WHO) Legal statusLegal status BR: Class B1 (Psychoactive drugs)[1] CA: Schedule IV DE: Prescription only (Anlage III for higher doses) UK: Class C US: Schedule IV Pharmacokinetic dataBioavailability91%MetabolismHepaticElimination half-life4...

2017 Women's Pan American CupTournament detailsHost countryUnited StatesCityLancasterDates5–13 AugustTeams7 (from 1 confederation)Venue(s)Spooky Nook SportsFinal positionsChampions Argentina (5th title)Runner-up ChileThird place United StatesTournament statisticsMatches played15Goals scored71 (4.73 per match)Top scorer(s) Noel Barrionuevo Kathleen Sharkey (5 goals)Best player Denise Krimerman ← 2013 (previous) (next) 2022 → The 2017 Women's Pan American Cup...

 

Ferdinando Maria Poggioli Ferdinando Maria Poggioli (Bologna, 15 dicembre 1897 – Roma, 2 febbraio 1945) è stato un regista e sceneggiatore italiano. Indice 1 Biografia 2 Filmografia 2.1 Regista 2.2 Montatore 3 Note 4 Altri progetti 5 Collegamenti esterni Biografia Si avvicinò al mondo del cinema con l'avvento del sonoro, inizialmente nel ruolo di montatore, esordendo nel 1931 come regista del documentario Impressioni siciliane. Nelle sue opere, ispirate a volte alle opere liriche del seco...

 

Questa voce sull'argomento calciatori greci è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Giōrgos Masouras Nazionalità  Grecia Altezza 184 cm Calcio Ruolo Centrocampista Squadra  Olympiakos Carriera Squadre di club1 2014-2019 Paniōnios111 (14)[1]2019- Olympiakos107 (30)[2] Nazionale 2015-2017 Grecia U-218 (0)2018- Grecia41 (8) 1 I due numeri indicano le presenze...

Gedung Waskita Raya di Jalan MT Haryono, Cawang, Jakarta Timur. Jalan Letnan Jenderal MT Haryono atau Jalan MT Haryono adalah nama salah satu jalan utama Jakarta. Nama jalan ini diambil dari nama seorang Pahlawan Revolusi Indonesia yaitu Letnan Jenderal TNI Anumerta Mas Tirtodarmo Haryono.[1] Jalan ini membentang sepanjang 3.5 KM dari Cawang, Kramat Jati, Jakarta Timur sampai Patung Pancoran, Pancoran, Pancoran, Jakarta Selatan. Jalan ini melintasi 8 Kelurahan, yaitu kelurahan: Cawang...

 

Roman emperor from 283 to 285 You can help expand this article with text translated from the corresponding article in French. (March 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic ...

 

Trade association for the UK and Ireland structural steel industry BCSA LtdNicknameBritish Constructional Steelwork Association[1]FormationApril 1, 1936; 88 years ago (1936-04-01)[2]TypeTrade associationLegal statusPrivate company limited by guarantee[3]PurposeInform, liaise and promote the structural steel industry[4]HeadquartersWhitehall Court, London[1]Coordinates51°30′19″N 0°07′28″W / 51.5054°N 0.12436°W...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

Everland ResortIndustriTaman hiburan dan sanggralokaDidirikanApril 1976 (1976-04)KantorpusatYongin, Gyeonggi-do, Korea SelatanPemilikSamsung EverlandSitus webSitus web resmi Everland ResortHangul에버랜드리조트 Alih AksaraEbeoraendeu RijoteuMcCune–ReischauerEbǒraendǔ Rijot'ǔ Everland Resort (Hangul: 에버랜드 리조트; RR: Ebeoraendeu Rijoteu) adalah taman hiburan dan sanggraloka liburan yang berlokasi di Yongin, Gyeonggi-do, Korea Selatan. Dimiliki d...

Election in Maine Main article: 1972 United States presidential election 1972 United States presidential election in Maine ← 1968 November 7, 1972 1976 →   Nominee Richard Nixon George McGovern Party Republican Democratic Home state California South Dakota Running mate Spiro Agnew Sargent Shriver Electoral vote 4 0 Popular vote 256,458 160,584 Percentage 61.46% 38.48% County Results Congressional District Results Nixon   50-60%  &#...

 

Ini adalah nama Korea; marganya adalah Hwang. Hwang Woo-seul-hyeHwang Woo Seul-hye di Seoul Fashion Week tahun 2011LahirHwang Jin-hee10 Agustus 1979 (umur 44)Seoul, Korea SelatanPendidikanUniversitas Konkuk – FilmPekerjaanAktrisTahun aktif2008–sekarangAgenHuayi Brothers Korea(Sim Entertainment)Nama KoreaHangul황우슬혜 Alih AksaraHwang U-seul-hyeMcCune–ReischauerHwang U-sŭl-hyeNama lahirHangul황진희 Alih AksaraHwang Jin-huiMcCune–ReischauerHwang Chin-hŭi Hwang Woo-se...

 

Reigning dynasty in Spain in the 16th and 17th centuries This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2021) (Learn how and when to remove this message) Monarchy of Spain[1][a]Monarchia Hispaniae[b]1516–1700 Cross of Burgundy(since c. 1525) Coat of arms of Habsburg Spain(1668–1700) 1570 map of the Iberian PeninsulaCa...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2012) (Learn how and when to remove this message) Ethnic group Arabs in Berlinالعرب في برلينTotal populationEstimated at around 135,000[1] (3.5%)Regions with significant populationsBerlin Neukölln, Schöneberg, Gesundbrunnen, Moabit, KreuzbergLanguagesGerman · ArabicReligi...

 

German jurist and philosopher (1655–1728) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2018) (Learn how and when to remove this message) Christian Thomasius, portrait by Johann Christian Heinrich Sporleder Christian Thomasius (1 January 1655 – 23 September 1728) was a German jurist and philosopher. Biography ...