Gallai–Hasse–Roy–Vitaver theorem

Four different orientations of a 5-cycle, showing a maximal acyclic subgraph of each orientation (solid edges) and a coloring of the vertices by the length of the longest incoming path in this subgraph. The orientation with the shortest paths, on the left, also provides an optimal coloring of the graph.

In graph theory, the Gallai–Hasse–Roy–Vitaver theorem is a form of duality between the colorings of the vertices of a given undirected graph and the orientations of its edges. It states that the minimum number of colors needed to properly color any graph equals one plus the length of a longest path in an orientation of chosen to minimize this path's length.[1] The orientations for which the longest path has minimum length always include at least one acyclic orientation.[2]

This theorem implies that every orientation of a graph with chromatic number contains a simple directed path with vertices;[3] this path can be constrained to begin at any vertex that can reach all other vertices of the oriented graph.[4][5]

Examples

A bipartite graph may be oriented from one side of the bipartition to the other. The longest path in this orientation has length one, with only two vertices. Conversely, if a graph is oriented without any three-vertex paths, then every vertex must either be a source (with no incoming edges) or a sink (with no outgoing edges) and the partition of the vertices into sources and sinks shows that it is bipartite.[6]

In any orientation of a cycle graph of odd length, it is not possible for the edges to alternate in orientation all around the cycle, so some two consecutive edges must form a path with three vertices. Correspondingly, the chromatic number of an odd cycle is three.

Proof

To prove that the chromatic number is greater than or equal to the minimum number of vertices in a longest path, suppose that a given graph has a coloring with colors, for some number . Then it may be acyclically oriented by numbering colors and by directing each edge from its lower-numbered endpoint to the higher-numbered endpoint. With this orientation, the numbers are strictly increasing along each directed path, so each path can include at most one vertex of each color, for a total of at most vertices per path.[3]

To prove that the chromatic number is less than or equal to the minimum number of vertices in a longest path, suppose that a given graph has an orientation with at most vertices per simple directed path, for some number . Then the vertices of the graph may be colored with colors by choosing a maximal acyclic subgraph of the orientation, and then coloring each vertex by the length of the longest path in the chosen subgraph that ends at that vertex. Each edge within the subgraph is oriented from a vertex with a lower number to a vertex with a higher number, and is therefore properly colored. For each edge that is not in the subgraph, there must exist a directed path within the subgraph connecting the same two vertices in the opposite direction, for otherwise the edge could have been included in the chosen subgraph; therefore, the edge is oriented from a higher number to a lower number and is again properly colored.[1]

The proof of this theorem was used as a test case for a formalization of mathematical induction by Yuri Matiyasevich.[7]

Category-theoretic interpretation

The theorem also has a natural interpretation in the category of directed graphs and graph homomorphisms. A homomorphism is a map from the vertices of one graph to the vertices of another that always maps edges to edges. Thus, a -coloring of an undirected graph may be described by a homomorphism from to the complete graph . If the complete graph is given an orientation, it becomes a tournament, and the orientation can be lifted back across the homomorphism to give an orientation of . In particular, the coloring given by the length of the longest incoming path corresponds in this way to a homomorphism to a transitive tournament (an acyclically oriented complete graph), and every coloring can be described by a homomorphism to a transitive tournament in this way.[2]

Considering homomorphisms in the other direction, to instead of from , a directed graph has at most vertices in its longest path if and only if there is no homomorphism from the path graph to .[2]

Thus, the Gallai–Hasse–Roy–Vitaver theorem can be equivalently stated as follows:

For every directed graph , there is a homomorphism from to the -vertex transitive tournament if and only if there is no homomorphism from the -vertex path to .[2]

In the case that is acyclic, this can also be seen as a form of Mirsky's theorem that the longest chain in a partially ordered set equals the minimum number of antichains into which the set may be partitioned.[8] This statement can be generalized from paths to other directed graphs: for every polytree there is a dual directed graph such that, for every directed graph , there is a homomorphism from to if and only if there is not a homomorphism from to .[9]

The Gallai–Hasse–Roy–Vitaver theorem has been repeatedly rediscovered.[2] It is named after separate publications by Tibor Gallai,[10] Maria Hasse,[11] B. Roy,[12] and L. M. Vitaver.[13] Roy credits the statement of the theorem to a conjecture in a 1958 graph theory textbook by Claude Berge.[12] It is a generalization of a much older theorem of László Rédei from 1934, that every tournament (an oriented complete graph) contains a directed Hamiltonian path.[14][15] Rédei's theorem follows immediately from the Gallai–Hasse–Roy–Vitaver theorem applied to an undirected complete graph.[14]

Instead of orienting a graph to minimize the length of its longest path, it is also natural to maximize the length of the shortest path, for a strong orientation (one in which every pair of vertices has a shortest path). Having a strong orientation requires that the given undirected graph be a bridgeless graph. For these graphs, it is always possible to find a strong orientation in which, for some pair of vertices, the shortest path length equals the length of the longest path in the given undirected graph.[16][17]

References

  1. ^ a b Hsu, Lih-Hsing; Lin, Cheng-Kuan (2009), "Theorem 8.5", Graph Theory and Interconnection Networks, Boca Raton, Florida: CRC Press, pp. 129–130, ISBN 978-1-4200-4481-2, MR 2454502
  2. ^ a b c d e Nešetřil, Jaroslav; Ossona de Mendez, Patrice (2012), "Section 3.7: Homomorphisms", Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28, Heidelberg: Springer, pp. 39–46, doi:10.1007/978-3-642-27875-4, ISBN 978-3-642-27874-7, MR 2920058; see especially Theorem 3.13, p. 42
  3. ^ a b Chartrand, Gary; Zhang, Ping (2009), "Theorem 7.17 (The Gallai–Roy–Vitaver Theorem)", Chromatic Graph Theory, Discrete Mathematics and its Applications, Boca Raton, Florida: CRC Press, ISBN 978-1-58488-800-0, MR 2450569
  4. ^ Li, Hao (2001), "A generalization of the Gallai–Roy theorem", Graphs and Combinatorics, 17 (4): 681–685, doi:10.1007/PL00007256, MR 1876576, S2CID 37646065
  5. ^ Chang, Gerard J.; Tong, Li-Da; Yan, Jing-Ho; Yeh, Hong-Gwa (2002), "A note on the Gallai–Roy–Vitaver theorem", Discrete Mathematics, 256 (1–2): 441–444, doi:10.1016/S0012-365X(02)00386-2, MR 1927565
  6. ^ Guzmán-Pro, Santiago; Hernández-Cruz, César (2022), "Oriented expressions of graph properties", European Journal of Combinatorics, 105, Paper No. 103567, arXiv:2012.12811, doi:10.1016/j.ejc.2022.103567, MR 4432176, S2CID 229363421
  7. ^ Матиясевич, Ю. В. (1974), "Одна схема доказательств в дискретной математике" [A certain scheme for proofs in discrete mathematics], Исследования по конструктивной математике и математической логике [Studies in constructive mathematics and mathematical logic. Part VI. Dedicated to A. A. Markov on the occasion of his 70th birthday], Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI) (in Russian), vol. 40, pp. 94–100, MR 0363823
  8. ^ Mirsky, Leon (1971), "A dual of Dilworth's decomposition theorem", American Mathematical Monthly, 78 (8): 876–877, doi:10.2307/2316481, JSTOR 2316481
  9. ^ Nešetřil, Jaroslav; Tardif, Claude (2008), "A dualistic approach to bounding the chromatic number of a graph", European Journal of Combinatorics, 29 (1): 254–260, doi:10.1016/j.ejc.2003.09.024, MR 2368632
  10. ^ Gallai, Tibor (1968), "On directed graphs and circuits", Theory of Graphs (Proceedings of the Colloquium held at Tihany 1966), Budapest: Akadémiai Kiadó, pp. 115–118
  11. ^ Hasse, Maria (1965), "Zur algebraischen Begründung der Graphentheorie. I", Mathematische Nachrichten (in German), 28 (5–6): 275–290, doi:10.1002/mana.19650280503, MR 0179105
  12. ^ a b Roy, B. (1967), "Nombre chromatique et plus longs chemins d'un graphe" (PDF), Rev. Française Informat. Recherche Opérationnelle (in French), 1 (5): 129–132, doi:10.1051/m2an/1967010501291, MR 0225683
  13. ^ Витавер, Л. М. (1962), "Нахождение минимальных раскрасок вершин графа с помощью булевых степеней матрицы смежностей [Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix]", Doklady Akademii Nauk SSSR (in Russian), 147: 758–759, MR 0145509
  14. ^ a b Havet, Frédéric (2013), "Section 3.1: Gallai–Roy Theorem and related results", Orientations and colouring of graphs (PDF), Lecture notes for the summer school SGT 2013 in Oléron, France, pp. 15–19
  15. ^ Rédei, László (1934), "Ein kombinatorischer Satz", Acta Litteraria Szeged, 7: 39–43
  16. ^ Gutin, G. (1994), "Minimizing and maximizing the diameter in orientations of graphs", Graphs and Combinatorics, 10 (3): 225–230, doi:10.1007/BF02986669, MR 1304376, S2CID 2453716
  17. ^ Bondy, J. A. (2003), "Short proofs of classical theorems", Journal of Graph Theory, 44 (3): 159–165, doi:10.1002/jgt.10135, MR 2012799, S2CID 2174153

Read other articles:

Pengeboman atom Hiroshima dan NagasakiBagian dari Perang Pasifik, Perang Dunia IIAwan jamur bom atom di langit Hiroshima (kiri) dan Nagasaki (kanan).Tanggal6 Agustus dan 9 Agustus 1945LokasiHiroshima dan Nagasaki, JepangHasil Sekutu menangPihak terlibat  Amerika Serikat Britania Raya  JepangTokoh dan pemimpin William S. Parsons Paul Tibbets Robert A. Lewis[1] Charles Sweeney Frederick Ashworth Shunroku HataPasukan Manhattan District: 50 A.S., 2 Britania50...

 

 

Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland ...

 

 

Lupin the 3rd vs Detective ConanSampul DVDPemeranLihat Pengisi suaraDistributorVapTanggal rilis27 Maret 2009Negara JepangBahasaBahasa Jepang Lupin the 3rd vs Detective Conan (ルパン三世VS名探偵コナンcode: ja is deprecated , Rupan Sansei vs Meitantei Konan) adalah spesial TV dari seri Lupin III dan Detektif Conan. Spesial TV ini ditayangkan pada 27 Maret 2009. Pengisi suara Arsène Lupin III - Kanichi Kurita Daisuke Jigen - Kiyoshi Kobayashi Goemon Ishikawa XIII - Makio Inoue F...

1963 murder of the 35th U.S. President Kennedy assassination redirects here. For the assassination of John's brother Robert, see Assassination of Robert F. Kennedy. November 22, 1963 redirects here. For the date, see November 22, 1963 (Friday). Assassination of John F. KennedyPresident John F. Kennedy, his wife Jacqueline, Texas governor John Connally, and Connally's wife Nellie in the presidential limousine minutes before the assassination in DallasLocationDealey Plaza in Dallas, Texas, U.S....

 

 

Vadi AkbarLahirVadie Akbar Kalamata8 Agustus 1995 (umur 28)Jakarta, IndonesiaKebangsaanIndonesiaAlmamaterUniversitas IndonesiaPekerjaanPenyanyiCEOTahun aktif2014–sekarangTempat kerjaV8 SoundKeluarga Vidi Aldiano (kakak) Sheila Dara Aisha (kakak ipar) Karier musikGenreJazzswingpop jazzInstrumenVokalLabelVAArtis terkaitChaseiro All Stars Vadie Akbar Kalamata (lahir 8 Agustus 1995) adalah penyanyi berkebangsaan Indonesia. Vadi memulai debut di industri musik pada tahun 2014 dengan m...

 

 

Private, non-profit school in Batu Feringghi, Penang, Penang Island, MalaysiaThe International School of Penang (Uplands)Respect for Self; Respect for OthersLocationBatu Feringghi, Penang, Penang IslandMalaysiaCoordinates5°28′12″N 100°14′59″E / 5.470053°N 100.249676°E / 5.470053; 100.249676InformationTypePrivate, non-profitMottoRespect for Self; Respect for OthersFounded1955[citation needed]PrincipalMarc MesichGenderMixedAge range4–19Enrollment±...

Hospital in New York, United StatesStony Brook University HospitalStony Brook MedicineEntrance to Stony Brook University HospitalGeographyLocation101 Nicolls Road, Stony Brook, New York, United StatesOrganizationTypeTeachingAffiliated universityRenaissance School of Medicine at Stony Brook UniversityServicesEmergency departmentLevel I trauma centerBeds695HelipadFAA LID: 13NYHistoryFormer name(s)Stony Brook University Medical CenterOpened1980LinksWebsitewww.stonybrookmedicine.eduListsHospitals...

 

 

Distrik Isoya di Subprefektur Shiribeshi. Isoya (磯谷郡code: ja is deprecated , Isoya-gun) adalah sebuah distrik yang yang berada di wilayah Subprefektur Shiribeshi, Hokkaido, Jepang. Per 31 Januari 2024, distrik ini memiliki estimasi jumlah penduduk sebesar 4.500 jiwa dan kepadatan penduduk sebesar 10 orang per km2. Distrik ini memiliki luas wilayah sebesar 449,78 km2. Kota kecil dan desa Rankoshi lbs HokkaidoSapporo (Ibu kota prefektur)lbsSubprefektur IshikariSapporoDistrik kota Ats...

 

 

Former electorate in Auckland, New Zealand Eden electorate boundaries between 1993 and 1996 Eden, a former New Zealand parliamentary electorate, lay in the general area of the suburb of Mount Eden in the city of Auckland. Population centres The 1870 electoral redistribution was undertaken by a parliamentary select committee based on population data from the 1867 census. Eight sub-committees were formed, with two members each making decisions for their own province; thus members set their own ...

American media company Not to be confused with other organizations named Scripps. The E. W. Scripps CompanyScripps headquarters in Cincinnati, OhioCompany typePublicTraded asNasdaq: SSP (Class A) (1988–1991; 2018–present)NYSE: SSP (1991–2018)IndustryBroadcast televisionFoundedNovember 2, 1878; 145 years ago (November 2, 1878) (as the Penny Press) in Cleveland, OhioFounderEdward W. ScrippsHeadquartersScripps Center, Cincinnati, Ohio, U.S.Key peopleKim Williams...

 

 

Voce principale: Rende Calcio 1968. Società Sportiva RendeStagione 1986-1987Sport calcio Squadra Rende Allenatore Gesualdo Albanese Presidente Raffaele Mazzuca Serie C216º nel girone D. Retrocede nel Campionato Interregionale. Maggiori presenzeCampionato: Massarini, Sarpa (32) Miglior marcatoreCampionato: Vitelli (11) 1985-1986 1987-1988 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti la Rende Calcio 1968 nelle competizioni ufficiali della stag...

 

 

Questa voce sull'argomento attori statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jamie Farr Jamie Farr, pseudonimo di Jameel Joseph Farah (Toledo, 1 luglio 1934), è un attore statunitense noto per l'interpretazione del caporale Klinger nella serie M*A*S*H[1][2]. Indice 1 Biografia 2 Filmografia parziale 2.1 Cinema 2.2 Televisione 3 Doppiatori italiani 4 Note 5 Collegament...

رسم مبياني لبيانات عشوائية تحقق أخطاء نمذجتها وفق الانحدار الخطي تجانس التباين تساوي التباين أو تجانس التباين (بالإنجليزية: Homoscedasticity)‏ هو خاصية متتالية أو متجهة متغيرات عشوائية، يكون فيها لكل المتغيرات العشوائية نفس التباين.[1] الخاصية المعاكسة هي اختلاف التباين (بال...

 

 

Part of a series on theCarbon cycle By regions Terrestrial Marine Atmospheric Deep carbon Soil Permafrost Boreal forest Geochemistry Carbon dioxide In the atmosphere Ocean acidification Removal Satellite measurements Forms of carbon Total carbon (TC) Total organic carbon (TOC) Total inorganic carbon (TIC) Dissolved organic carbon (DOC) Dissolved inorganic carbon (DIC) Particulate organic carbon (POC) Particulate inorganic carbon (PIC) Primary production marine Black carbon Blue carbon Kerogen...

 

 

Pour les articles homonymes, voir Shirayuki. ShirayukiPhotographie de l'empereur Hirohito à cheval sur Shirayuki, dans les années 1930.BiographieNaissance 1921Haras de BábolnaDécès 25 octobre 1947Shimōsa Imperial Stock Farm (d)Propriétaire Hirohitomodifier - modifier le code - modifier Wikidata Shirayuki (白雪?), ou Shira-Yuki, ou encore Sirayuki (en japonais, « Neige blanche »), est un cheval que montait l'empereur du Japon Hirohito au début de l'ère Shōwa. Ce cheval...

Congressional committee United States House Permanent Select Committee on IntelligencePermanent select committeeActiveUnited States House of Representatives118th CongressSeal of the House Permanent Select Committee on IntelligenceHistoryFormedJuly 14, 1977Formerly known asSelect Committee on IntelligenceLeadershipChairMike Turner (R) Since January 9, 2023Ranking memberJim Himes (D) Since February 1, 2023StructureSeats25Political partiesMajority (14)   Republican (14) Minority (11)  ...

 

 

Women's 100 metres at the 2023 World ChampionshipsVenueNational Athletics CentreDates20 August (heats)21 August (semi-final & final)Competitors56 from 38 nationsWinning time10.65 CRMedalists  Sha'Carri Richardson   United States Shericka Jackson   Jamaica Shelly-Ann Fraser-Pryce   Jamaica← 20222025 → Video on YouTubeOfficial Video Events at the2023 World ChampionshipsTrack events100 mmenwomen200 m...

 

 

Geoffrey MarcyLahir29 September 1954 (umur 69)KebangsaanAmerikaAlmamaterUniversitas California, Los Angeles (B.A.)Universitas California, Santa Cruz (Ph.D.)Dikenal ataspenemuan eksoplanetPenghargaanMedali Henry Draper (2001)Penghargaan Shaw (2005)Karier ilmiahBidangAstronomi, AstrofisikaInstitusiInstitusi Carnegie untuk SainsUniversitas San Francisco StateUniversitas California, BerkeleyPembimbing doktoralSteven S. Vogt [1] Geoffrey W. Marcy (lahir 29 September 1954, St. Clair S...

Passo del CerroIl cartello posto in cima al passo.Stato Italia Regione Emilia-Romagna Provincia Piacenza Località collegateVal Trebbia e Val Nure Altitudine750 m s.l.m. Coordinate44°47′11.03″N 9°33′08.37″E44°47′11.03″N, 9°33′08.37″E Pendenza massimaVersante da Bettola 8,5 %Versante da Perino di Coli 12[1]% LunghezzaVersante da Bettola 7,2 kmVersante da Perino di Coli 13,5 km Chiusura invernaleno Mappa di localizzazionePasso del C...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 孝恩寺 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2021年12月) 孝恩寺 観音堂(国宝)所在地 大阪府貝塚市木積798�...