GCD domain

In mathematics, a GCD domain (sometimes called just domain) is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).[1]

A GCD domain generalizes a unique factorization domain (UFD) to a non-Noetherian setting in the following sense: an integral domain is a UFD if and only if it is a GCD domain satisfying the ascending chain condition on principal ideals (and in particular if it is Noetherian).

GCD domains appear in the following chain of class inclusions:

rngsringscommutative ringsintegral domainsintegrally closed domainsGCD domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfieldsalgebraically closed fields

Properties

Every irreducible element of a GCD domain is prime. A GCD domain is integrally closed, and every nonzero element is primal. In other words, every GCD domain is a Schreier domain.

For every pair of elements x, y of a GCD domain R, a GCD d of x and y and an LCM m of x and y can be chosen such that dm = xy, or stated differently, if x and y are nonzero elements and d is any GCD d of x and y, then xy/d is an LCM of x and y, and vice versa. It follows that the operations of GCD and LCM make the quotient R/~ into a distributive lattice, where "~" denotes the equivalence relation of being associate elements. The equivalence between the existence of GCDs and the existence of LCMs is not a corollary of the similar result on complete lattices, as the quotient R/~ need not be a complete lattice for a GCD domain R.[citation needed]

If R is a GCD domain, then the polynomial ring R[X1,...,Xn] is also a GCD domain.[2]

R is a GCD domain if and only if finite intersections of its principal ideals are principal. In particular, , where is the LCM of and .

For a polynomial in X over a GCD domain, one can define its content as the GCD of all its coefficients. Then the content of a product of polynomials is the product of their contents, as expressed by Gauss's lemma, which is valid over GCD domains.

Examples

  • A unique factorization domain is a GCD domain. Among the GCD domains, the unique factorization domains are precisely those that are also atomic domains (which means that at least one factorization into irreducible elements exists for any nonzero nonunit).
  • A Bézout domain (i.e., an integral domain where every finitely generated ideal is principal) is a GCD domain. Unlike principal ideal domains (where every ideal is principal), a Bézout domain need not be a unique factorization domain; for instance the ring of entire functions is a non-atomic Bézout domain, and there are many other examples. An integral domain is a Prüfer GCD domain if and only if it is a Bézout domain.[3]
  • If R is a non-atomic GCD domain, then R[X] is an example of a GCD domain that is neither a unique factorization domain (since it is non-atomic) nor a Bézout domain (since X and a non-invertible and non-zero element a of R generate an ideal not containing 1, but 1 is nevertheless a GCD of X and a); more generally any ring R[X1,...,Xn] has these properties.
  • A commutative monoid ring is a GCD domain iff is a GCD domain and is a torsion-free cancellative GCD-semigroup. A GCD-semigroup is a semigroup with the additional property that for any and in the semigroup , there exists a such that . In particular, if is an abelian group, then is a GCD domain iff is a GCD domain and is torsion-free.[4]
  • The ring is not a GCD domain for all square-free integers .[5]

G-GCD domains

Many of the properties of GCD domain carry over to Generalized GCD domains,[6] where principal ideals are generalized to invertible ideals and where the intersection of two invertible ideals is invertible, so that the group of invertible ideals forms a lattice. In GCD rings, ideals are invertible if and only if they are principal, meaning the GCD and LCM operations can also be treated as operations on invertible ideals.

Examples of G-GCD domains include GCD domains, polynomial rings over GCD domains, Prüfer domains, and π-domains (domains where every principal ideal is the product of prime ideals), which generalizes the GCD property of Bézout domains and unique factorization domains.

References

  1. ^ Anderson, D. D. (2000). "GCD domains, Gauss' lemma, and contents of polynomials". In Chapman, Scott T.; Glaz, Sarah (eds.). Non-Noetherian Commutative Ring Theory. Mathematics and its Application. Vol. 520. Dordrecht: Kluwer Academic Publishers. pp. 1–31. doi:10.1007/978-1-4757-3180-4_1. MR 1858155.
  2. ^ Robert W. Gilmer, Commutative semigroup rings, University of Chicago Press, 1984, p. 172.
  3. ^ Ali, Majid M.; Smith, David J. (2003), "Generalized GCD rings. II", Beiträge zur Algebra und Geometrie, 44 (1): 75–98, MR 1990985. P. 84: "It is easy to see that an integral domain is a Prüfer GCD-domain if and only if it is a Bezout domain, and that a Prüfer domain need not be a GCD-domain".
  4. ^ Gilmer, Robert; Parker, Tom (1973), "Divisibility Properties in Semigroup Rings", Michigan Mathematical Journal, 22 (1): 65–86, MR 0342635.
  5. ^ Mihet, Dorel (2010), "A Note on Non-Unique Factorization Domains (UFD)", Resonance, 15 (8): 737–739.
  6. ^ Anderson, D. (1980), "Generalized GCD domains.", Commentarii Mathematici Universitatis Sancti Pauli., 28 (2): 219–233

Read other articles:

Percentages of United States listed species which are conservation-reliant Conservation-reliant species are animal or plant species that require continuing species-specific wildlife management intervention such as predator control, habitat management and parasite control to survive, even when a self-sustainable recovery in population is achieved.[1] History The term conservation-reliant species grew out of the conservation biology undertaken by The Endangered Species Act at Thirty Pro...

 

Lucky RomanceGenreKomedi romantisDrama tempat kerjaBerdasarkanLucky Romanceoleh Kim Dal-nimDitulis olehChoi Yoon-gyoSutradaraKim Kyung-heePemeranHwang Jung-eumRyu Jun-yeolLee Soo-hyukLee Chung-ahNegara asalKorea SelatanBahasa asliKoreaJmlh. episode16ProduksiProduser eksekutifKim Do-hoonDurasi70 menitRumah produksiSim EntertainmentRilis asliJaringanMunhwa Broadcasting CorporationFormat gambar1080i (HDTV)Rilis25 Mei 2016 (2016-05-25) – () Lucky Romance (Hangul: 운빨...

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Raditz di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan arti...

Not to be confused with the Tri-State District, another lead mining district also largely located in Missouri. Lead mining area in Missouri, US Lead belt redirects here. For the concentration of wargames companies in England, see Lead belt (wargaming). Map of counties in the regionNotable subdistricts of the Lead Belt and the mines of the New Lead Belt Historical marker commemorating the first mine at Mine La Motte about 1700. Missouri Mines State Historic Site occupies a retired lead mill in...

 

Mazmur 149Naskah Gulungan Mazmur 11Q5 di antara Naskah Laut Mati memuat salinan sejumlah besar mazmur Alkitab yang diperkirakan dibuat pada abad ke-2 SM.KitabKitab MazmurKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen19← Mazmur 148 Mazmur 150 → Mazmur 149 (disingkat Maz 149, Mzm 149 atau Mz 149) adalah sebuah mazmur dalam bagian ke-5 Kitab Mazmur dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Tidak dicatat nama penggubahnya.[1] T...

 

Voce principale: Campionato mondiale di calcio 1930. Finale del campionato mondiale di calcio 1930La formazione dell'Uruguay schierata prima della finaleInformazioni generaliSport Calcio Competizione1930 FIFA World Cup knockout stage Data30 luglio 1930 CittàMontevideo Impiantostadio del Centenario Spettatori68 346 Dettagli dell'incontro Uruguay Argentina 4 2 Arbitro John Langenus (Belgio) Successione Finale del campionato mondiale di calcio 1934 → Modifica dati su Wikidata&#...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт...

 

Earth's southernmost continent This article is about the continent. For the region, see Antarctic. For other uses, see Antarctica (disambiguation). Antipodea redirects here. For Australia and New Zealand, see Australasia. AntarcticaArea14,200,000 km25,500,000 sq mi[1]Population1,300 to 5,100 (seasonal)Population density0.00009/km2 to 0.00036/km2 (seasonal)Countries7 territorial claimsTime zonesAll time zonesInternet TLD.aqLargest settlementsMcMurdo StationOther research...

 

Railway station in Peru 11°37′18″S 76°11′08″W / 11.621694°S 76.1854206°W / -11.621694; -76.1854206 Tourist train of FCCA at Galera station in 2008 Galera is the third[citation needed] highest railway station in the Western Hemisphere with an elevation of 4,781 m (15,681 ft). Overview It is situated in the Andes in Peru at km 172.7 on the Ferrocarril Central Andino (FCCA) line from Lima to Huancayo, immediately east of the 1.2 km (6860...

American politician (1760–1822) Michael LeibMember of the Pennsylvania Senate from the 1st districtIn office1818–1821Preceded byJohn ReadSucceeded byCondy RaguetMember of the Pennsylvania House of RepresentativesIn office1817–1818United States Senatorfrom PennsylvaniaIn officeJanuary 9, 1809 – February 14, 1814Preceded bySamuel MaclaySucceeded byJonathan RobertsMember of the Pennsylvania House of RepresentativesIn office1806–1808Member of the U.S. House of Repre...

 

Bohemia Interactive a.s.JenisSwastaIndustriPermainan videoDidirikanMei 1999; Galat: first parameter cannot be parsed as a date or time. (1999-05)PendiriMarek ŠpanělOndřej ŠpanělSlavomír PavlíčekKantorpusatPraha, Republik CekoTokohkunciMarek Španěl(CEO)Slavomír Pavlíček(CFO)Pendapatan Templat:CZK (2016)[1]Laba operasi Templat:CZK (2016)[1]Total ekuitas Templat:CZK (2016)[1]Karyawan400+[2] (2023)Situs webbohemia.net Bohemia Interactive a.s....

 

Halaman pertama dan terakhir dari konstitusi 1871, dengan tanda tangan Wilhelm, Kaisar Jerman dan Raja Prusia Skema sederhana konstitusi Jerman 1871 Konstitusi Kekaisaran Jerman (Jerman: Verfassung des Deutschen Reichescode: de is deprecated ) adalah hukum dasar dari Kekaisaran Jerman pada 1871-1919, yang dibuat pada 16 April 1871.[1] Para sejarawan Jerman sering menyebutnya sebagai konstitusi kekaisaran Bismarck, yang dalam bahasa Jerman disebut Bismarcksche Reichsverfassung. Konstit...

Sebuah pesawat F/A-18 Hornet milik Angkatan Laut Amerika Serikat yang diluncurkan menggunakan katapel landasan dengan kekuatan penuh dari pembakar lanjut. Pembakar lanjut atau pembakaran lanjut adalah sebuah komponen tambahan yang dipasang pada sesetengah mesin jet, terutama pada pesawat militer berkecepatan supersonik untuk memberi lonjakan daya dorong sementara saat terbang baik dalam kecepatan supersonik atau saat lepas landas (disebabkan beban sayap yang tinggi pada tipikal pesawat supers...

 

Islamic terrorism attack Marseille stabbingLe Grand Escalier at the Saint-Charles train station MarseilleLocationMarseille-Saint-Charles station, Marseille, FranceDate1 October 2017TargetTravellersWeaponsKnifeDeaths3 (including the perpetrator)PerpetratorAhmed Hanachi[1]MotiveIslamic extremism[2] On 1 October 2017, a man killed two women at the Saint-Charles train station in Marseille, France. The women, 20-year-old and 21-year-old cousins, were attacked by an illegal immigran...

 

История Кореи Доисторическая Корея Кочосон, Чингук Ранние корейские государства: Пуё, Окчо, Тонокчо, Е, Тонъе, Пёнхан, Чинхан, Махан,Четыре ханьских округа Три корейских государства:  Когурё  Пэкче  Силла  Конфедерация Кая Поздние три корейские государства Позд...

Ne pas confondre avec International Standard Serial Number (ISSN) pour les journaux et revues. L'International Standard Book Number (ISBN) ou Numéro international normalisé du livre est un numéro internationalement reconnu, créé en 1970, identifiant de manière unique chaque édition de chaque livre publié[1],[2] postérieurement à l’introduction de l’ISBN, quel que soit son support[3]. Cet identifiant pérenne est destiné à simplifier la gestion pour tous les intervenants d...

 

Skema pengembangan obat dalam kimia medisinal[1] Kimia medisinal adalah multidisiplin ilmu yang terlibat dalam desain, sintesis obat potensial diikuti oleh studi pemeriksaan interaksi mereka dengan target biologis untuk memahami efek obat, metabolisme dan efek samping.[2] Kimia medisinal terlibat dalam identifikasi, sintesis, dan pengembangan entitas kimia baru (new chemical entity) yang dapat digunakan untuk terapi. Bidang ini juga melakukan kajian terhadap obat yang sudah ad...

 

Set of economic theories and practices within anarchism Part of a series onAnarchism History Outline Schools of thought Feminist Green Primitivist Social ecology Total liberation Individualist Egoist Free-market Naturist Philosophical Mutualism Postcolonial African Black Queer Religious Christian Jewish Social Collectivist Parecon Communist Magonism Without adjectives Methodology Agorism Illegalism Insurrectionary Communization Expropriative Pacifist Platformism Especifismo Relationship Syndi...

American politician Philip Giordano44th Mayor of Waterbury, ConnecticutIn officeJanuary 1, 1996 – October 15, 2001Preceded byEdward BerginSucceeded bySam CaligiuriMember of the Connecticut House of Representativesfrom the 71st districtIn officeJanuary 7, 1995 – November 8, 1995Preceded byRobert J. DavinoSucceeded byAnthony D'Amelio Personal detailsBornPhilip Anthony Giordano (1963-03-25) March 25, 1963 (age 61)Caracas, VenezuelaPolitical partyRepublicanS...

 

Wrath or rage in Sikh tradition For the 2000 Indian film, see Krodh (film). For other uses, see Krodha (disambiguation). Sikh beliefs 1a. Simran (spiritual contemplation) 1b. Sewa (selfless service) 2. Three Pillars 2a. Naam Japo (contemplating God's names) Meditating on God's name to control the five evils and living a satisfying life. 2b. Kirat Karo (work diligently) Earning/making a living honestly, without exploitation or fraud 2c. Vand Chhako Sharing with others, helping those with less ...