Fáry's theorem

In the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by Klaus Wagner (1936), Fáry (1948), and Sherman K. Stein (1951).

Proof

Induction step for proof of Fáry's theorem.

One way of proving Fáry's theorem is to use mathematical induction.[1] Let G be a simple plane graph with n vertices; we may add edges if necessary so that G is a maximally plane graph. If n < 3, the result is trivial. If n ≥ 3, then all faces of G must be triangles, as we could add an edge into any face with more sides while preserving planarity, contradicting the assumption of maximal planarity. Choose some three vertices a, b, c forming a triangular face of G. We prove by induction on n that there exists a straight-line combinatorially isomorphic re-embedding of G in which triangle abc is the outer face of the embedding. (Combinatorially isomorphic means that the vertices, edges, and faces in the new drawing can be made to correspond to those in the old drawing, such that all incidences between edges, vertices, and faces—not just between vertices and edges—are preserved.) As a base case, the result is trivial when n = 3 and a, b and c are the only vertices in G. Thus, we may assume that n ≥ 4.

By Euler's formula for planar graphs, G has 3n − 6 edges; equivalently, if one defines the deficiency of a vertex v in G to be 6 − deg(v), the sum of the deficiencies is 12. Since G has at least four vertices and all faces of G are triangles, it follows that every vertex in G has degree at least three. Therefore each vertex in G has deficiency at most three, so there are at least four vertices with positive deficiency. In particular we can choose a vertex v with at most five neighbors that is different from a, b and c. Let G' be formed by removing v from G and retriangulating the face f formed by removing v. By induction, G' has a combinatorially isomorphic straight line re-embedding in which abc is the outer face. Because the re-embedding of G' was combinatorially isomorphic to G', removing from it the edges which were added to create G' leaves the face f, which is now a polygon P with at most five sides. To complete the drawing to a straight-line combinatorially isomorphic re-embedding of G, v should be placed in the polygon and joined by straight lines to the vertices of the polygon. By the art gallery theorem, there exists a point interior to P at which v can be placed so that the edges from v to the vertices of P do not cross any other edges, completing the proof.

The induction step of this proof is illustrated at right.

De Fraysseix, Pach and Pollack showed how to find in linear time a straight-line drawing in a grid with dimensions linear in the size of the graph, giving a universal point set with quadratic size. A similar method has been followed by Schnyder to prove enhanced bounds and a characterization of planarity based on the incidence partial order. His work stressed the existence of a particular partition of the edges of a maximal planar graph into three trees known as a Schnyder wood.

Tutte's spring theorem states that every 3-connected planar graph can be drawn on a plane without crossings so that its edges are straight line segments and an outside face is a convex polygon (Tutte 1963). It is so called because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.

Steinitz's theorem states that every 3-connected planar graph can be represented as the edges of a convex polyhedron in three-dimensional space. A straight-line embedding of of the type described by Tutte's theorem, may be formed by projecting such a polyhedral representation onto the plane.

The Circle packing theorem states that every planar graph may be represented as the intersection graph of a collection of non-crossing circles in the plane. Placing each vertex of the graph at the center of the corresponding circle leads to a straight line representation.

Unsolved problem in mathematics:
Does every planar graph have a straight line representation in which all edge lengths are integers?

Heiko Harborth raised the question of whether every planar graph has a straight line representation in which all edge lengths are integers.[2] The truth of Harborth's conjecture remains unknown. Integer-distance straight line embeddings are known to exist for cubic graphs.[3]

Sachs (1983) raised the question of whether every graph with a linkless embedding in three-dimensional Euclidean space has a linkless embedding in which all edges are represented by straight line segments, analogously to Fáry's theorem for two-dimensional embeddings.

See also

Notes

  1. ^ The proof that follows can be found in Chartrand, Gary; Lesniak, Linda; Zhang, Ping (2010), Graphs & Digraphs (5th ed.), CRC Press, pp. 259–260, ISBN 9781439826270.
  2. ^ Harborth et al. (1987); Kemnitz & Harborth (2001); Mohar & Thomassen (2001); Mohar (2003).
  3. ^ Geelen, Guo & McKinnon (2008).

References

Read other articles:

Location of Craig County in Virginia This is a list of the National Register of Historic Places listings in Craig County, Virginia. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Craig County, Virginia, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in an online map.[1] There are 6 properties and districts ...

 

العلاقات البوتانية الميكرونيسية بوتان ولايات ميكرونيسيا المتحدة   بوتان   ولايات ميكرونيسيا المتحدة تعديل مصدري - تعديل   العلاقات البوتانية الميكرونيسية هي العلاقات الثنائية التي تجمع بين بوتان وولايات ميكرونيسيا المتحدة.[1][2][3][4][5] مقا...

 

S.K. Samt'rediaCalcio Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Blu, bianco Dati societari Città Samtredia Nazione  Georgia Confederazione UEFA Federazione GFF Campionato Erovnuli Liga Fondazione 1936 Presidente Gia Omanadze Allenatore Dimitar Kapinkovski Stadio Stadio Erosi Manjgaladze(15 000 posti) Sito web fcsamtredia.com Palmarès Titoli nazionali 1 campionato georgiano Trofei nazionali 1 Supercoppa di Georgia Dati aggiornati al 27 febbraio 2020Si inv...

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

Governo Fanfani I Stato Italia Presidente del ConsiglioAmintore Fanfani(DC) CoalizioneDCcon l'appoggio esterno di: PRIe l'astensione di: PLI LegislaturaII Legislatura Giuramento19 gennaio 1954 Dimissioni30 gennaio 1954 Governo successivoScelba10 febbraio 1954 Pella Scelba Giulio Andreotti durante la cerimonia di giuramento al cospetto del presidente della Repubblica Luigi Einaudi e di Amintore Fanfani Il Governo Fanfani I è stato il nono esecutivo della Repubblica Italiana, il terzo del...

 

Professional Japanese chef's knife This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Usuba bōchō – news · newspapers · books · scholar · JSTOR (August 2009) (Learn how and when to remove this message) An usuba knife Usuba bōchō (薄刃包丁, lit. thin knife) is the traditional vegetable knife for the prof...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Artike...

 

If I Had a Hammer(the Hammer Song)Pete Seeger nel 2008ArtistaPete SeegerPeter, Paul and MaryTrini Lopez Autore/iPete Seeger - Lee Hays(The Weavers) GenereFolkCountrySurf musicGospelRhythm and blues Stilecanzone Esecuzioni notevoliPeter, Paul and Mary, Trini Lopez, Artisti vari miglior interpretazione vocale di un gruppo 1963 Data1958[1] Data seconda pubblicazionegiorno e mese della data di seconda pubblicazione If I Had a Hammer (The Hammer Song), traducibile con Se avessi un mar...

 

Grand Prix Abu Dhabi 2011 Lomba ke-18 dari 19 dalam Formula Satu musim 2011← Lomba sebelumnyaLomba berikutnya → Sirkuit Yas MarinaDetail perlombaanTanggal 13 November 2011Nama resmi 2011 Formula 1 Etihad Airways Abu Dhabi Grand PrixLokasi Pulau Yas, Abu Dhabi, Uni Emirat ArabSirkuit Fasilitas balapan permanenPanjang sirkuit 5.554 km (3.451 mi)Jarak tempuh 55 putaran, 305.470 km (189.810 mi)Cuaca Baik dan kering Temperatur Udara 25 °C (77 °F)[1]Posis...

Burma campaign 1942–1943Part of the Pacific War during World War IIJapanese troops at the Shwethalyaung Buddha in PeguDateJune 1942 – September 1943LocationBurmaResult Axis victoryBelligerents Allies: United Kingdom British India British Burma United States Republic of China Axis: Japan State of BurmaCommanders and leaders Archibald Wavell Noel Irwin George Giffard Joseph Stilwell Shojiro Iida Masakazu Kawabe Ba Maw Casualties and losses ~6,500 casualties[note 1] 1,800+ casualties...

 

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Sezession (Begriffsklärung) aufgeführt. Sezession bzw. Inkorporation im Gegensatz zur Dismembration bzw. Fusion Sezession (lateinisch secessio ‚Abspaltung‘, ‚Abseitsgehen‘, ‚Trennung‘; die Gebietsabtrennung ist auch als Separation bekannt) bezeichnet im Politischen die Loslösung einzelner Landesteile aus einem bestehenden Staat mit dem Ziel, einen eigenen unabhängigen und neuen souveränen Staat ...

 

Overview of and topical guide to war The following outline is provided as an overview of and topical guide to war: War – organised and often prolonged armed conflict that is carried out by states or non-state actors – is characterised by extreme violence, social disruption, and economic destruction.[1][2] War should be understood as an actual, intentional and widespread armed conflict between political communities, and therefore is defined as a form of political violence o...

History of the feminist movement in Germany Part of a series onFeminism History Feminist history History of feminism Women's history American British Canadian German Waves First Second Third Fourth Timelines Women's suffrage Muslim countries US Other women's rights Women's suffrage by country Austria Australia Canada Colombia India Japan Kuwait Liechtenstein New Zealand Spain Second Republic Francoist Switzerland United Kingdom Cayman Islands Wales United States states Intersectional variants...

 

Little Owl (Arapaho: Beah-at-sah-ah-tch-che) was a Northern Arapaho chief who signed the Treaty of Fort Laramie (1851).[1] Disturbed by the ways in which the United States government neglected to honor their promises made in the treaty, Little Owl refused to participate in discussion and signing of the Fort Wise Treaty. Life Little Owl was chief of the Long Legs band of the Northern Arapaho people.[1][2] His relative, Sherman Sage, a later elder, described life among h...

 

Questa voce o sezione tratta di una competizione calcistica in corso. Le informazioni possono pertanto cambiare rapidamente con il progredire degli eventi. Se vuoi scrivere un articolo giornalistico sull'argomento, puoi farlo su Wikinotizie. Non aggiungere speculazioni alla voce. Voce principale: Football Club Nordsjælland. NordsjællandStagione 2023-2024Sport calcio Squadra Nordsjælland Allenatore Johannes Hoff Thorup Presidente Tom Vernon Superligaenda disputare Coppa di Danimarcada...

British gardener, broadcaster, and writer (born 1949) Alan TitchmarshMBE DL VMH HonFSETitchmarsh in 2007BornAlan Fred Titchmarsh (1949-05-02) 2 May 1949 (age 75)Ilkley, West Riding of Yorkshire, EnglandEducationHertfordshire College of Agriculture and HorticultureRoyal Botanic Gardens, KewOccupation(s)Broadcaster, gardener, novelist, poetYears active1974–presentTelevisionGardeners' World (1996–2002)Ground Force (1997–2002)Alan Titchmarsh Show (2007–2014)Popstar to Op...

 

South Korean singer and actor (born 1995) In this Korean name, the family name is Ong. Ong Seong-wu옹성우Ong in 2022Born (1995-08-25) August 25, 1995 (age 28)Incheon, South KoreaAlma materDong Seoul UniversityOccupationsSingeractorYears active2017–presentMusical careerGenresK-popsynthsoft rockR&BInstrument(s)VocalsLabelsFantagioYMC[a]Swing[a]Formerly ofWanna One Musical artistKorean nameHangul옹성우Hanja邕聖祐Revised RomanizationOng Seong-uMcCune�...

 

Gavin O'Connor Gavin O'Connor (Long Island, 24 dicembre 1963) è un regista, sceneggiatore, produttore cinematografico, commediografo e attore statunitense. Indice 1 Biografia 2 Filmografia 2.1 Regista 2.1.1 Cinema 2.1.2 Televisione 2.2 Produttore 2.3 Attore 3 Doppiatori italiani 4 Note 5 Collegamenti esterni Biografia Nato a Long Island, nello Stato di New York, frequenta l'Università della Pennsylvania, dove inizia a scrivere le sue prime sceneggiature e si interessa a tutti gli aspetti de...

魔弾の王と戦姫 ジャンル 異世界[1]、ファンタジー戦記[2]、アクション[3]、ラブコメ[4] 小説 著者 川口士 イラスト よし☆ヲ(MF文庫J版第1巻 - 第8巻)[注 1]片桐雛太(MF文庫J版第9巻 - 第18巻)白谷こなか(ダッシュエックス文庫版) 出版社 MF文庫J版:メディアファクトリー→KADOKAWAダッシュエックス文庫版:集英社 レーベル MF文庫Jダッシ�...

 

تجمع راس مناو  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حضرموت المديرية مديرية رماة العزلة عزلة رماة السكان التعداد السكاني 2004 السكان 50   • الذكور 24   • الإناث 26   • عدد الأسر 7   • عدد المساكن 7 معلومات أخرى التوقيت توقيت اليمن (+3 غرينيتش) تعدي...