Karl W. Böer observed first the shift of the optical absorption edge with electric fields [1] during the discovery of high-field domains[2] and named this the Franz-effect.[3] A few months later, when the English translation of the Keldysh paper became available, he corrected this to the Franz–Keldysh effect.[4]
As originally conceived, the Franz–Keldysh effect is the result of wavefunctions "leaking" into the band gap. When an electric field is applied, the electron and hole wavefunctions become Airy functions rather than plane waves. The Airy function includes a "tail" which extends into the classically forbidden band gap. According to Fermi's golden rule, the more overlap there is between the wavefunctions of a free electron and a hole, the stronger the optical absorption will be. The Airy tails slightly overlap even if the electron and hole are at slightly different potentials (slightly different physical locations along the field). The absorption spectrum now includes a tail at energies below the band gap and some oscillations above it. This explanation does, however, omit the effects of excitons, which may dominate optical properties near the band gap.
The Franz–Keldysh effect occurs in uniform, bulk semiconductors, unlike the quantum-confined Stark effect, which requires a quantum well. Both are used for electro-absorption modulators. The Franz–Keldysh effect usually requires hundreds of volts, limiting its usefulness with conventional electronics – although this is not the case for commercially available Franz–Keldysh-effect electro-absorption modulators that use a waveguide geometry to guide the optical carrier.
n0 and k0 are the real and complex parts of the refractive index of the material.
We will consider the direct transition of an electron from the valence band to the conduction band induced by the incident light in a perfect crystal and try to take into account of the change of absorption coefficient for each Hamiltonian with a probable interaction like electron-photon, electron-hole, external field. These approach follows from.[5] We put the 1st purpose on the theoretical background of Franz–Keldysh effect and third-derivative modulation spectroscopy.
One electron Hamiltonian in an electro-magnetic field
where A is the vector potential and V(r) is a periodic potential.
(kp and e are the wave vector of em field and unit vector.)
Neglecting the square term and using the relation within the Coulomb gauge , we obtain
Then using the Bloch function (j = v, c that mean valence band, conduction band)
the transition probability can be obtained such that
Power dissipation of the electromagnetic waves per unit time and unit volume gives rise to following equation
From the relation between the electric field and the vector potential, , we may put
And finally we can get the imaginary part of the dielectric constant and surely the absorption coefficient.
2-body(electron-hole) Hamiltonian with EM field
An electron in the valence band(wave vector k) is excited by photon absorption into the conduction band(the wave vector at the band is ) and leaves a hole in the valence band (the wave vector of the hole is ). In this case, we include the electron-hole interaction.()
Thinking about the direct transition, is almost same. But Assume the slight difference of the momentum due to the photon absorption is not ignored and the bound state- electron-hole pair is very weak and the effective mass approximation is valid for the treatment. Then we can make up the following procedure, the wave function and wave vectors of the electron and hole
(i, j are the band indices, and re, rh, ke, kh are the coordinates and wave vectors of the electron and hole respectively)
And we can take the center of mass momentum Q such that
and define the Hamiltonian
Then, Bloch functions of the electron and hole can be constructed with the phase term
If V varies slowly over the distance of the integral, the term can be treated like following.
1
here we assume that the conduction and valence bands are parabolic with scalar masses and that at the top of the valence band , i.e.
( is the energy gap)
Now, the Fourier transform of entering Eq.(1), the effective mass equation for the exciton may be written as
then the solution of eq is given by
is called the envelope function of an exciton. The ground state of the exciton is given in analogy to the hydrogen atom.
Franz–Keldysh effect means an electron in a valence band can be allowed to be excited into a conduction band by absorbing a photon with its energy below the band gap. Now we're thinking about the effective mass equation for the relative motion of electron hole pair when the external field is applied to a crystal. But we are not to take a mutual potential of electron-hole pair into the Hamiltonian.
When the Coulomb interaction is neglected, the effective mass equation is
.
And the equation can be expressed,
( where is the value in the direction of the principal axis of the reduced effective mass tensor)
Using change of variables:
then the solution is
where
For example, the solution is given by
The dielectric constant can be obtained inserting this expression into Eq.(2), and changing the summation with respect to λ to
The integral with respect to is given by the joint density of states for the two-D band. (the Joint density of states is nothing but the meaning of DOS of both electron and hole at the same time.)
where
Then we put
And think about the case we find , thus with the asymptotic solution for the Airy function in this limit.
Finally,
Therefore, the dielectric function for the incident photon energy below the band gap exist! These results indicate that absorption occurs for an incident photon.
^Böer, K. W.; Hänsch, H. J.; Kümmel, U. (1958). "Methode zum Sichtbarmachen von Leitfähigkeitsinhomogenitäten von Halbleitern". Die Naturwissenschaften (in German). 45 (19). Springer Science and Business Media LLC: 460. Bibcode:1958NW.....45..460B. doi:10.1007/bf00632716. ISSN0028-1042. S2CID20829600.
^Karl W. Böer Monatsber. Deutsch.Akad. d.Wissensch. 1,272 (1959)
^Böer, K. W.; Hänsch, H. J.; Kümmel, U. (1959). "Anwendung elektro-optischer Effekte zur Analyse des elektrischen Leitungsvorganges in CdS-Einkristallen". Zeitschrift für Physik (in German). 155 (2). Springer Science and Business Media LLC: 170–183. Bibcode:1959ZPhy..155..170B. doi:10.1007/bf01337934. ISSN1434-6001. S2CID121560792.
W. Franz, Einfluß eines elektrischen Feldes auf eine optische Absorptionskante, Z. Naturforschung 13a (1958) 484–489.
L. V. Keldysh, Behaviour of Non-Metallic Crystals in Strong Electric Fields, J. Exptl. Theoret. Phys. (USSR) 33 (1957) 994–1003, translation: Soviet Physics JETP 6 (1958) 763–770.
L. V. Keldysh, Ionization in the Field of a Strong Electromagnetic Wave, J. Exptl. Theoret. Phys. (USSR) 47 (1964) 1945–1957, translation: Soviet Physics JETP 20 (1965) 1307–1314.
Town in North Rhine-Westphalia, GermanyWipperfürth TownProtestant church FlagCoat of armsLocation of Wipperfürth within Oberbergischer Kreis district Wipperfürth Show map of GermanyWipperfürth Show map of North Rhine-WestphaliaCoordinates: 51°7′N 7°24′E / 51.117°N 7.400°E / 51.117; 7.400CountryGermanyStateNorth Rhine-WestphaliaAdmin. regionKöln DistrictOberbergischer Kreis Subdivisions8Government • Mayor (2020–25) Anne Michaela Loth[...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الدوري القبرصي لكرة القدم 2011-2012 تفاصيل الموسم الدوري القبرصي الدرجة الأولى النسخة 73 البلد قبرص ...
Georges LautnerLautner di Festival Film Cannes 2010Lahir(1926-01-24)24 Januari 1926Nice, PrancisMeninggal22 November 2013(2013-11-22) (umur 87)Paris, PrancisPekerjaanSutradaraPenulis naskahDikenal atasLes Tontons flingueurs Georges Lautner (bahasa Prancis: [lotnɛʁ]; 24 Januari 1926 – 22 November 2013[1]) adalah seorang sutradara dan penulis naskah asal Prancis. Ia dikenal karena membuat film-film komedi yang dibaut dalam kolaborasi dengan penulis naskah Mi...
Congregation of Saint Michael the ArchangelCongregatio Sancti Michaelis ArchangeliAbbreviationCSMANicknameMichaelites[1]Formation1921; 103 years ago (1921)FounderBlessed Fr. Bronisław Bonawentura Markiewicz, SDBTypeClerical Religious Congregation of Pontifical Right for menHeadquartersUl. Marszalka Józefa Pilsudskiego 248/252, 05-261 Marki-Struga, PolandCoordinates41°54′4.9″N 12°27′38.2″E / 41.901361°N 12.460611°E / 41.901361; 12...
Footwear secured by straps worn in Ancient Rome A c. 37 AD statue of the emperor Tiberius recovered from a theater at Herculaneum. Depicted performing a religious ritual with his toga pulled over his head, the emperor is shown wearing the calceus patricius of the patrician class. Calcei in a Roman fresco from Paestum, in southern Italy The calceus (pl.: calcei) was the common upper-class male footwear of the Roman Republic and Empire. Normally made of leather and hobnailed, it was flat ...
Truck race at Atlanta Motor Speedway Georgia 200 redirects here. For the spring Truck race, see Georgia 200 (spring). E-Z-Go 200NASCAR Craftsman Truck SeriesVenueAtlanta Motor SpeedwayLocationHampton, Georgia, United StatesCorporate sponsorE-Z-GoFirst race2005Last race2008Distance200.20 miles (322.19 km)Laps130Previous namesEasyCare Vehicle Service Contracts 200 (2005–2007)E-Z-Go 200 (2008)Most wins (driver)Kyle Busch (2)Most wins (team)Billy Ballew Motorsports (2)Most wins (manufactur...
Law on CitizenshipParliamentary Assembly of Bosnia and Herzegovina Long title Law on Citizenship of Bosnia and Herzegovina Enacted byHigh Representative for Bosnia and HerzegovinaEnacted16 December 1997Status: Current legislation The nationality law of Bosnia and Herzegovina governs the acquisition, transmission and loss of citizenship of Bosnia and Herzegovina. Regulated under the framework of the Law on Citizenship of Bosnia and Herzegovina, it is based primarily on the principle of j...
NASCAR Seri Piala Winston 1981 Sebelum: 1980 Sesudah: 1982 Darrell Waltrip (foto 2019) meraih gelar pertamanya di musim 1981. NASCAR Seri Piala Winston musim 1981 adalah musim ketiga puluh tiga balap mobil stok profesional di Amerika Serikat dan musim Seri Piala era modern ke-10. Musim dimulai di Riverside International Raceway dengan lomba Winston Western 500 pertama pada 11 Januari 1981 dan berakhir dengan acara yang sama pada 22 November. Darrell Waltrip memenangkan kejuaraan pertamanya d...
Франц Саксен-Кобург-Заальфельдскийнем. Franz von Sachsen-Coburg-Saalfeld герцог Саксен-Кобург-Заальфельдский 8 сентября 1800 — 9 декабря 1806 Предшественник Эрнст Фридрих Саксен-Кобург-Заальфельдский Преемник Эрнст I Саксен-Кобург-Заальфельдский Рождение 15 июля 1750(1750-07-15)Кобург, Сакс...
La Champions League è la competizione europea più prestigiosa. Con competizioni calcistiche europee, o colloquialmente con il termine di coppe europee, ci si riferisce, in ambito calcistico, alle manifestazioni stagionali per club organizzate esclusivamente sul territorio europeo. Indice 1 Storia 1.1 1927-1955 1.2 Dal 1955 a oggi 2 Composizione 2.1 UEFA 2.1.1 Trofei vigenti 2.1.2 Trofei soppressi 2.2 Non UEFA 3 Vittorie per squadra 4 Vittorie per nazione 5 Vittorie di più trofei in una sta...
MuseumPosterNama lainミュージアムSutradaraKeishi ŌtomoDitulis olehIzumi TakahashiBerdasarkanMuseumoleh Ryosuke TomoePemeran Shun Oguri Machiko Ono Shūhei Nomura Tomomi Maruyama Tomoko Tabata Mikako Ichikawa Masatō Ibu Yutaka Matsushige Nao Ōmori Satoshi Tsumabuki PerusahaanproduksiTwins JapanDistributorWarner Bros. PicturesTanggal rilis 12 November 2016 (2016-11-12) NegaraJapanBahasaJapanese Museum adalah film Jepang produksi tahun 2016 yang disutradarai oleh Keishi Ōtom...
American politician Aaron Leland7th Lieutenant Governor of VermontIn office1822–1827GovernorRichard SkinnerCornelius P. Van NessEzra ButlerPreceded byWilliam CahoonSucceeded byHenry Olin19th Speaker of the Vermont House of RepresentativesIn office1804–1808Preceded byTheophilus HarringtonSucceeded byDudley ChaseMember of the Vermont House of Representatives from ChesterIn office1813–1815Preceded byWilliam HosmerSucceeded byJoshua LelandIn office1809–1811Preceded byThomas S. Ful...
„Was ist Wahrheit?“ – stilisierte katalanische Inschrift am Eingang der Sagrada Família, Barcelona Was ist Wahrheit? ist im Johannes-Evangelium (Joh 18,38 EU) die Erwiderung des Pontius Pilatus auf die Bemerkung Jesu, in die Welt gekommen zu sein, um „Zeugnis für die Wahrheit“ abzulegen. Die Frage geht der Verurteilung Jesu zum Kreuzestod unmittelbar voraus und bleibt unbeantwortet: Pilatus wendet sich ab, ohne auf eine Antwort zu warten. Sie ist ein locus classicus für die ...
Laksa Sarawak adalah hidangan de facto dari negara bagian Sarawak[1] Hidangan Sarawak adalah hidangan daerah Malaysia. Seperti hidangan Malaysia lainnya, hidangan Sarawak berbahan dasar makanan pokok seperti nasi. Ada juga berbagai macam bahan dan olahan makanan lainnya karena pengaruh geografi negara bagian yang bervariasi dan budaya asli yang sangat berbeda dari masakan daerah Semenanjung Malaysia. Sarawak terkenal dengan populasi multi-etnisnya.[2] Lihat pula Hidangan Sabah...
American animated television series This article is about the original television series. For other uses, see The Adventures of Rocky and Bullwinkle (disambiguation). Boris & Natasha redirects here. For the movie by that name, see Boris and Natasha: The Movie. For Boris, see Boris Badenov. For Natasha, see Natasha Fatale. The Adventures of Rocky and Bullwinkle and FriendsThe show's modern title card, used on home video releases in the 21st centuryAlso known as Rocky and His Friends (ABC) ...
لمعانٍ أخرى، طالع كلارندون (توضيح). كلارندون الإحداثيات 43°11′36″N 78°03′53″W / 43.193333333333°N 78.064722222222°W / 43.193333333333; -78.064722222222 [1] تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى مقاطعة أورلينز خصائص جغرافية المساحة 35.22 ميل مربع ...