Francis Mander

New Zealand Parliament
Years Term Electorate Party
1902–1905 15th Marsden Independent
1905–1908 16th Marsden Independent
1908–1909 17th Marsden Independent
1909–1911 Changed allegiance to: Reform
1911–1914 18th Marsden Reform
1914–1919 19th Marsden Reform
1919–1922 20th Marsden Reform

Francis Mander (1849 – 27 August 1942) was a member of parliament in New Zealand, first as an Independent Conservative and then, from 1909, as a Reform Party member.

He won the Marsden electorate in Northland in the 1902 general election, and held it until 1922, when he retired.

He was appointed to the Legislative Council in 1923, and served on it to 1930.

In business he was a pioneer sawmiller and owner of The Northern Chronicle newspaper, based in Whangarei. He then purchased a popular newspaper, The Northern Advocate, and closed the Chronicle.

He was the father of the notable New Zealand novelist and journalist, Jane Mander, and a descendant of the Mander family of Midland England.

References

  • Wilson, James Oakley (1985) [First published in 1913]. New Zealand Parliamentary Record, 1840–1984 (4th ed.). Wellington: V.R. Ward, Govt. Printer. OCLC 154283103.
New Zealand Parliament
Preceded by Member of Parliament for Marsden
1902–1922
Succeeded by


Read other articles:

Katedral PaviaKatedral Santa Maria Diangkat ke Surga dan Santo Stefanus ProtomartirItalia: Cattedrale di S. Maria Assunta e S. Stefano Prot.code: it is deprecated Katedral PaviaLokasiPaviaNegaraItaliaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Pavia Katedral Pavia (Italia: Duomo di Paviacode: it is deprecated ) adalah sebuah gereja katedral Katolik yang terletak di Pavia, Italia, menjadi gereja yang terbesar di kota dan pusat Keusk...

 

American animated comedy franchise This article is about the media franchise. For the television show, see The Simpsons. For other uses, see The Simpsons (disambiguation). The SimpsonsCreated byMatt GroeningOriginal workThe Simpsons shorts from The Tracey Ullman ShowOwner20th Television AnimationYears1987–presentPrint publicationsBook(s)List of booksComicsList of comicsMagazine(s)Simpsons IllustratedFilms and televisionFilm(s)The Simpsons MovieShort film(s) The Simpsons shorts (1987–1989)...

 

American politician John M. AshbrookMember of the U.S. House of Representativesfrom Ohio's 17th districtIn officeJanuary 3, 1961 – April 24, 1982Preceded byRobert W. LeveringSucceeded byJean Spencer AshbrookMember of the Ohio House of RepresentativesIn office1957–1961 Personal detailsBornJohn Milan Ashbrook(1928-09-21)September 21, 1928Johnstown, Ohio, U.S.DiedApril 24, 1982(1982-04-24) (aged 53)Newark, Ohio, U.S.Political partyRepublicanSpouses Joan Needels R...

Halaman ini berisi artikel tentang Unit Gabungan ke-5307 (Sementara). Untuk film, lihat Merrill's Marauders (film). Unit Gabungan ke-5307 (sementara)Aktif1943–1944Negara Amerika SerikatCabang Angkatan Darat Amerika SerikatTipe unitInfanteri ringan khususJumlah personelResimentalJulukanMerrill's MaraudersPertempuranPerang Dunia II*Kampanye BurmaTokohTokoh berjasaFrank Merrill Charles N. Hunter Merrill’s Marauders (dinamai dari Frank Merrill) atau Unit Galahad, secara resmi bernam...

 

American politician (born 1973) Jason Mumpower35th Comptroller of the Treasury of TennesseeIncumbentAssumed office January 13, 2021GovernorBill LeePreceded byJustin P. WilsonMember of the Tennessee House of Representativesfrom the 3rd districtIn officeJanuary 14, 1997 – January 11, 2011Preceded byRon RamseySucceeded byScotty Campbell Personal detailsBorn (1973-09-22) September 22, 1973 (age 50)Political partyRepublicanResidence(s)Bristol, TennesseeAlma materKin...

 

Force Motors LimitedSebelumnyaBajaj Tempo MotorsJenisPublikKode emiten BSE: 500033 NSE: FORCEMOT BSE SENSEX Constituent NSE NIFTY 50 Constituent ISININE451A01017Industri Otomotif Didirikan1958; 66 tahun lalu (1958)PendiriN.K. FirodiaKantorpusatPune, Maharashtra, IndiaWilayah operasiDuniaTokohkunci Abhay Firodia (Chairman) Prasan A. Firodia (Managing Director) ProdukTravellerTraxGurkhaOrchardBalwan TractorsPendapatan ₹2.012,71 crore (US$280 juta) (2021)Laba bersihTemplat:Negat...

Pour le courant politique espagnol, voir Intégrisme (Espagne). Ne doit pas être confondu avec Fondamentalisme. L'intégrisme est un courant au sein de l'Église catholique romaine, particulièrement en France[1], dont l'appellation remonte au début du XXe siècle, lors de la crise moderniste, lorsque le courant conservateur de cette Église oppose aux partisans d'une ouverture au monde moderne un catholicisme dit « intégral » qui défend le maintien des vérités catholi...

 

Éphémérides Chronologie du Canada 1842 1843 1844  1845  1846 1847 1848Décennies au Canada :1810 1820 1830  1840  1850 1860 1870 Chronologie dans le monde 1842 1843 1844  1845  1846 1847 1848Décennies :1810 1820 1830  1840  1850 1860 1870Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, ...

 

Hungarian sports league K&H női kézilabda ligaFounded1951No. of teams14CountryHungaryConfederationEHFMost recentchampion(s)Győri ETO (17th title)Most titlesGyőri ETO (17 titles)TV partner(s)M4 SportLevel on pyramid1Relegation toNemzeti Bajnokság I/BInternational cup(s)Champions LeagueEuropean LeagueOfficial websitehttps://www.mksz.hu 2023–24 season The Nemzeti Bajnokság I (English: National Championship I, commonly abbreviated NB I) is the top professional league for Hungarian wom...

19th-century Australian art movement Arthur Streeton, Golden Summer, Eaglemont, 1889 Tom Roberts, Shearing the Rams, 1890 The Heidelberg School was an Australian art movement of the late 19th century. It has been described as Australian impressionism.[1] Melbourne art critic Sidney Dickinson coined the term in an 1891 review of works by Arthur Streeton and Walter Withers, two local artists who painted en plein air in Heidelberg on the city's rural outskirts. The term has since evolved...

 

Mobile phone model This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for products and services. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be show...

 

Far-right organization based in the United States American Center for Law & JusticeFormation1990HeadquartersWashington, D.C., United StatesFounderPat RobertsonKey peopleJay Sekulow, Jordan SekulowWebsiteaclj.org The American Center for Law & Justice (ACLJ) is a politically conservative, Christian-based legal organization in the United States. It is headquartered in Washington, D.C., and associated with Regent University School of Law in Virginia Beach, Virginia. The ACLJ was founded i...

Large group of smaller galaxy clusters or galaxy groups A map of the superclusters and voids nearest to Earth A supercluster is a large group of smaller galaxy clusters or galaxy groups;[1] they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group (which contains more than 54 galaxies), which in turn is part of the Virgo Supercluster, which is part of the Laniakea Supercluster, which is part of the Pisces–Cetus Supercluster Co...

 

Questa voce o sezione sull'argomento arte è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. 1. modello in cera 2. creazione di uno stampo La ...

 

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Balla...

X-2 Bell X-2 #2 with a collapsed nose landing gear, after landing on the first glide flight, on 22 April 1952 at Edwards Air Force Base. Jenis Research aircraft Negara asal United States Pembuat Bell Aircraft Penerbangan perdana 18 November 1955 (first powered flight) Dipensiunkan 27 September 1956 Pengguna utama United States Air ForceNational Advisory Committee for Aeronautics Jumlah 2 Bell X-2 (dijuluki Starbuster[1] ) adalah pesawat penelitian dibangun untuk menyelidiki kara...

 

Former Kurdish principality For other uses, see Baban (disambiguation).Baban principalityبابان16th century–1850CapitalKirkuk (16th century - 1783)Sulaymaniah (1783 - 1850)Common languagesSorani KurdishReligion Shafiʽi Sunni Islam[1]GovernmentMonarchyHistory • Established 16th century• Baban revolt suppressed 1850 Preceded by Succeeded by Ottoman Empire Ottoman Empire Baban (Kurdish: بابان)[2] was a Kurdish principality existing from the 16t...

 

Formula One motor race held on 15 May 2016 2016 Spanish Grand Prix Race 5 of 21 in the 2016 Formula One World Championship← Previous raceNext race → Layout of the Circuit de Barcelona-CatalunyaRace detailsDate 15 May 2016Official name Formula 1 Gran Premio de España Pirelli 2016[1][2][3]Location Circuit de Barcelona-CatalunyaMontmeló, SpainCourse Permanent racing facilityCourse length 4.655 km (2.892 miles)Distance 66 laps, 307.104 km (190.826...

Laman dari Valerius Maximus, Facta et dicta memorabilia, dicetak dalam warna merah dan hitam oleh Peter Schöffer (Mainz, 1471). Incunable, atau terkadang incunabulum (jamak incunables atau incunabula), adalah sebuah buku, pamflet, atau lembar lebar (seperti Almanach cracoviense ad annum 1474) yang dicetak—bukan ditulis tangan—sebelum tahun 1501 di Eropa. Pada 2014, terdapat sekitar 30,000 edisi incunable yang diketahui masih ada, sementara jumlah salinan yang masih ada di Jerman sendiri ...

 

عرض النطاق مقاسا عند نقاط نصف القدرة (التكبير -3 dB, √2/2، أي حوالي 0.707 نسبة إلى الذروة) مثال لمرشح تمرير النطاق في وسط معقد مخطط يبين مرشح تمرير النطاق على شكل كيلوري. مرشح تمرير النطاق أو مرشح تمرير النطاق[1] (بالإنجليزية: bandpass filter)‏ عبارة عن جهاز لتمرير الترددات في نطاق معي...