Frances Badger
|
Read other articles:
Icono griego de la Segunda Venida, c. 1700 El término parusía (en griego, παρουσία; romanización, parousía; literalmente ‘presencia, advenimiento, llegada’),[1] es la creencia cristiana e islámica de que Jesús regresará a la Tierra tras su ascensión al cielo, un acontecimiento esperado al final de la historia conocido también como: la segunda venida de Cristo, por lo que también se usa la palabra maranata, que significa ‘Cristo viene’. En la Bibli...
Хрюкін Тимофій Тимофійовичрос. Хрюкин Тимофей Тимофеевич Народження 8 (21) червня 1910(1910-06-21)ЄйськСмерть 19 липня 1953(1953-07-19) (43 роки)МоскваПоховання Новодівичий цвинтарКраїна СРСРПриналежність Радянська арміяВид збройних сил ВПС СРСРОсвіта Військова академія Гене...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. GinkgoidaeRentang fosil: 199.6–0 jtyl PreЄ Є O S D C P T J K Pg N Jurasik hingga sekarang Klasifikasi ilmiah Kerajaan: Plantae Kelas: Equisetopsida Subkelas: GinkgoidaeEngl. in H.G.A.Engler & K.A.E.Prantl 1897 Ordo: GinkgoalesGorozh. 1904...
4TEN4TEN di Hello, Mr K! Concert, pada April 2016Informasi latar belakangNama lainPOTENAsalSeoul, Korea SelatanGenreK-popDance-popHip hopTahun aktif2014 (2014)–sekarangLabelJungle EntertainmentAnggota Hyeji Hyejin Heeo Jisoo Mantan anggota TEM Eujin Hajeong Yun 4Ten (Hangul:포텐, sebelumnya POTEN), umumnya ditulis sebagai 4TEN, adalah grup vokal wanita asal Korea Selatan yang dibentuk oleh Jungle Entertainment pada tahun 2014.[1] Grup ini pada saat ini terdiri dari empat angg...
Wilayah Manchuria yang di aneksasi Rusia (berwarna). Garis merah muda adalah perbatasan semula Qing dan Rusia. Manchuria Luar (Hanzi: 外滿洲), dikenal di Tiongkok sebagai Tiongkok Timur Laut Luar Hanzi: 外東北), dan Priamurye (Kiril: Приаму́рье) di Rusia, adalah wilayah Tiongkok yang diambil oleh Rusia dalam Perjanjian Aigun dan pada tahun 1858 dan Perjanjian Peking pada tahun 1860. Kawasan ini pada masa sekarang terdiri dari kawasan Krai Primorsky, selatan Krai Khabar...
Municipality in Quezon, Philippines Municipality in Calabarzon, PhilippinesMacalelonMunicipalityMunicipality of MacalelonMacalelon Harborfront FlagSealMap of Quezon with Macalelon highlightedOpenStreetMapMacalelonLocation within the PhilippinesCoordinates: 13°45′N 122°08′E / 13.75°N 122.13°E / 13.75; 122.13CountryPhilippinesRegionCalabarzonProvinceQuezonDistrict 3rd districtBarangays30 (see Barangays)Government [1] • TypeSangguniang Ba...
Wakil Wali Kota Tidore KepulauanPetahanaMuhammad Seninsejak 26 Februari 2021Pemerintah Kota Tidore KepulauanMasa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanDibentuk2005; 19 tahun lalu (2005)Pejabat pertamaSalahuddin AdriasSitus webSitus web resmi Wakil Wali Kota Tidore Kepulauan adalah posisi kedua yang memerintah Kota Tidore Kepulauan di bawah Wali Kota Tidore Kepulauan. Posisi ini pertama kali dibentuk pada tahun 2005. Daftar No. Wakil Wali Kota Potret Pa...
Branch of differential geometry and differential topology Phase portrait of the Van der Pol oscillator, a one-dimensional system. Phase space was the original object of study in symplectic geometry. Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the ...
Canadian author Harriet A. RocheHarriet A. Roche (née Mills, later Roche & Boomer)BornHarriet Mills(1835-07-10)10 July 1835[1]Bishop's Hull, EnglandDied1 March 1921(1921-03-01) (aged 85)London, Ontario, CanadaNationalityCanadianOccupationauthorSpouses Alfred R. Roche (m. 1858–1876) Rev. Micail Boomer (m. 1878–1888) Harriet A. Roche (née Mills, later Boom...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: La La La Love Thang – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this template message) 1996 studio album by Toshinobu KubotaLa La La Love ThangStudio album by Toshinobu KubotaReleasedDecember 2, 1996Recorded1...
Smartphone by Samsung Samsung Galaxy Xcover 3 SM-G388FBrandSamsung GalaxyManufacturerSamsung ElectronicsFirst releasedJuly 2014; 9 years ago (2014-07)PredecessorSamsung Galaxy Xcover 2SuccessorSamsung Galaxy Xcover 4RelatedSamsung Galaxy S6 ActiveTypeTouchscreen smartphoneForm factorSlateDimensions132.9 mm (5.23 in) H70.1 mm (2.76 in) W10 mm (0.39 in) DMass154 grams (5.4 oz)Operating systemOriginal: Android 4.4.4 KitKat Current: Androi...
Alleged conspiracy of French lepers to spread their disease Two lepers denied entrance to town The 1321 lepers' plot was an alleged conspiracy of French lepers to spread their disease by contaminating water supplies, including well water, with their powders and poisons.[1] According to the American historian Solomon Grayzel, lepers were the most abused group of people during the Middle Ages: they were thrown out of settlements and treated as wild animals due to the widespread belief t...
16th and 17th-century Scottish Jesuit saint and martyr SaintJohn OgilvieSJJohn OgilvieMartyrBorn1580[1]Drumnakeith, Banffshire, ScotlandDied10 March 1615(1615-03-10) (aged 34–35)Glasgow Cross, ScotlandVenerated inCatholic ChurchBeatified22 December 1929, Rome, Vatican City by Pius XICanonized17 October 1976, Rome, Vatican City by Paul VlFeast10 March John Ogilvie, SJ (1580 – 10 March 1615) was a Scottish Jesuit priest. For his work in service to a persecuted Catholic com...
Political party in Sweden New Democracy Ny DemokratiFoundersIan WachtmeisterBert KarlssonFounded4 February 1991Dissolved25 February 2000HeadquartersStockholm and GothenburgIdeologyRight-wing populism[1][2][3]National liberalism[4]National conservatism[4]Economic liberalism[5][6][7]Pro-Europeanism[6]Political positionRight-wingColoursYellowWebsitenydemokrati.se (defunct)Politics of SwedenPolitical partiesElection...
Geisha district in Kyoto This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gion – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this message) 35°00′13″N 135°46′30″E / 35.003496°N 135.775051°E / 35.003496; 135.775051 Hanamikoji street ...
شارلوتا سيدركريوتز ماريا شارلوتا سيدركريوتز معلومات شخصية تاريخ الميلاد سنة 1736 الوفاة سنة 1815 (78–79 سنة) ستوكهولم الجنسية سويدية عضوة في الأكاديمية الملكية السويدية للفنون الحياة العملية المهنة مساعدة شخصية، ورسامة تعديل مصدري - تعديل ماريا شارل...
UK government department DVLA redirects here. For the Ghanaian equivalent, see Driver and Vehicle Licensing Authority. Not to be confused with the Driver and Vehicle Standards Agency or the Driver and Vehicle Agency in Northern Ireland. Driver and Vehicle Licensing AgencyThe DVLA in SwanseaAgency overviewFormed1965; 59 years ago (1965)TypeExecutive agencyJurisdictionUnited KingdomHeadquartersSwansea, WalesAgency executiveJulie Lennard, Chief Executive OfficerParent agencyDep...
إيرلنديونÉireannaigh (بالأيرلندية) التعداد الكليالتعداد 80 مليون (تقدير)مناطق الوجود المميزةالبلد جمهورية أيرلنداالولايات المتحدةالمملكة المتحدة الولايات المتحدة 40,000,000+ بريطانيا العظمى 14,000,000 أستراليا 7,000,000 كندا 4,544,870 الأرجنتين 1,000,000 المكسيك 600,000[بحاجة لمص�...
Sede del Comitato Olimpico Neozelandese New Zealand Olympic CommitteeLogo Fondazione1911 Nazione Nuova Zelanda ConfederazioneComitato Olimpico Internazionale (dal 1919) Sede Wellington Presidente Mike Stanley Sito ufficialewww.olympic.org.nz/Front.aspx?ID=3783 Modifica dati su Wikidata · Manuale Il Comitato Olimpico della Nuova Zelanda (noto anche come New Zealand Olympic Committee in inglese) è un'organizzazione sportiva neozelandese, nata nel 1911 a Wellington in Nuova Zela...
Der Grundzustand eines quantenmechanischen oder quantenfeldtheoretischen Systems ist dessen Zustand mit der geringstmöglichen Energie (siehe auch Energieniveau). Wenn das einzige Elektron des Wasserstoffatoms keine Energie mehr abgeben kann, befindet es sich im Grundzustand (unterste Linie) Wahrscheinlichkeitsverteilung |ψ|² des Grundzustandes |0⟩ eines harmonischen Oszillators: Ein Teilchen ist darin gaußförmig über den Raum verteilt. Quantenmechanik Der Grundzustand eines Systems is...