The factual accuracy of part of this article is disputed. The dispute is about substantially different definitions in the literature. Please help to ensure that disputed statements are reliably sourced. See the relevant discussion on the talk page.(March 2018) (Learn how and when to remove this message)
allows a function f to be recovered from its Fourier transform.
In particular
Similarly, at a positive value of a, f(0) can be recovered from the FBI transform of f(x) by the inversion formula
Criterion for local analyticity
Bros and Iagolnitzer showed that a distribution f is locally equal to a real analytic function at y, in the direction ξ
if and only if its FBI transform satisfies an inequality of the form
for |ξ| sufficiently large.
Holmgren's uniqueness theorem
A simple consequence of the Bros and Iagolnitzer characterisation of local analyticity is the following regularity result of Lars Hörmander and Mikio Sato (Sjöstrand (1982)).
Theorem. Let P be an elliptic partial differential operator with analytic coefficients defined on an open subset
X of Rn. If Pf is analytic in X, then so too is f.
When "analytic" is replaced by "smooth" in this theorem, the result is just Hermann Weyl's classical lemma on elliptic regularity, usually proved using Sobolev spaces (Warner 1983). It is a special case of more general results involving the analytic wave front set (see below), which imply Holmgren's classical strengthening of the Cauchy–Kowalevski theorem on linear partial differential equations with real analytic coefficients. In modern language, Holmgren's uniquess theorem states that any distributional solution of such a system of equations must be analytic and therefore unique, by the Cauchy–Kowalevski theorem.
The analytic wave front set
The analytic wave front set or singular spectrum WFA(f) of a distributionf (or more generally of a hyperfunction) can be defined in terms of the FBI transform (Hörmander (1983)) as the complement of the conical set of points (x, λ ξ) (λ > 0) such that the FBI transform satisfies the Bros–Iagolnitzer inequality
for y the point at which one would like to test for analyticity, and |ξ| sufficiently large and pointing in the direction one would like to look for the wave front, that is, the direction at which the singularity at y, if it exists, propagates. J.M. Bony (Sjöstrand (1982), Hörmander (1983)) proved that this definition coincided with other definitions introduced independently by Sato, Kashiwara and Kawai and by Hörmander. If P is an mth order linear differential operator having analytic coefficients
with principal symbol
and characteristic variety
then
In particular, when P is elliptic, char P = ø, so that
WFA(Pf) = WFA(f).
This is a strengthening of the analytic version of elliptic regularity mentioned
above.
References
Folland, Gerald B. (1989), Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122, Princeton University Press, ISBN0-691-08528-5
Hörmander, Lars (1983), Analysis of Partial Differential Operators I, Springer-Verlag, ISBN3-540-12104-8 (Chapter 9.6, The Analytic Wavefront Set.)
Iagolnitzer, Daniel (1975), Microlocal essential support of a distribution and local decompositions – an introduction. In Hyperfunctions and theoretical physics, Lecture Notes in Mathematics, vol. 449, Springer-Verlag, pp. 121–132
Trèves, François (1992), Hypo-analytic structures: Local theory, Princeton Mathematical Series, vol. 40, Princeton University Press, ISBN0-691-08744-X (Chapter 9, FBI Transform in a Hypo-Analytic Manifold.)
Warner, Frank (1983), Foundations of differential geometry and Lie groups, Graduate texts in mathematics, vol. 94, Springer-Verlag, ISBN0-387-90894-3