If M and N are nilpotentnormal subgroups of a groupG, then their product MN is also a nilpotent normal subgroup of G; if, moreover, M is nilpotent of class m and N is nilpotent of class n, then MN is nilpotent of class at most m + n.[2]
By induction it follows also that the subgroup generated by a finite collection of nilpotent normal subgroups is nilpotent. This can be used to show that the Fitting subgroup of certain types of groups (including all finite groups) is nilpotent. However, a subgroup generated by an infinite collection of nilpotent normal subgroups need not be nilpotent.[3]
^Clement, Anthony E.; Majewicz, Stephen; Zyman, Marcos (2017), "2.3.6 Products of Normal Nilpotent Subgroups", The theory of nilpotent groups, Cham: Birkhäuser/Springer, pp. 46–47, doi:10.1007/978-3-319-66213-8, ISBN978-3-319-66211-4