Fisher–Tippett–Gnedenko theorem

In statistics, the Fisher–Tippett–Gnedenko theorem (also the Fisher–Tippett theorem or the extreme value theorem) is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927),[1] Fisher and Tippett (1928),[2] Mises (1936),[3][4] and Gnedenko (1943).[5]

The role of the extremal types theorem for maxima is similar to that of central limit theorem for averages, except that the central limit theorem applies to the average of a sample from any distribution with finite variance, while the Fisher–Tippet–Gnedenko theorem only states that if the distribution of a normalized maximum converges, then the limit has to be one of a particular class of distributions. It does not state that the distribution of the normalized maximum does converge.

Statement

Let be an n-sized sample of independent and identically-distributed random variables, each of whose cumulative distribution function is . Suppose that there exist two sequences of real numbers and such that the following limits converge to a non-degenerate distribution function:

or equivalently:

In such circumstances, the limiting function is the cumulative distribution function of a distribution belonging to either the Gumbel, the Fréchet, or the Weibull distribution family.[6]

In other words, if the limit above converges, then up to a linear change of coordinates will assume either the form:[7]

with the non-zero parameter also satisfying for every value supported by (for all values for which ).[clarification needed] Otherwise it has the form:

This is the cumulative distribution function of the generalized extreme value distribution (GEV) with extreme value index . The GEV distribution groups the Gumbel, Fréchet, and Weibull distributions into a single composite form.

Conditions of convergence

The Fisher–Tippett–Gnedenko theorem is a statement about the convergence of the limiting distribution above. The study of conditions for convergence of to particular cases of the generalized extreme value distribution began with Mises (1936)[3][5][4] and was further developed by Gnedenko (1943).[5]

Let be the distribution function of and be some i.i.d. sample thereof.
Also let be the population maximum:

The limiting distribution of the normalized sample maximum, given by above, will then be:[7]


Fréchet distribution
For strictly positive the limiting distribution converges if and only if
and
for all
In this case, possible sequences that will satisfy the theorem conditions are
and
Strictly positive corresponds to what is called a heavy tailed distribution.


Gumbel distribution
For trivial and with either finite or infinite, the limiting distribution converges if and only if
for all
with
Possible sequences here are
and


Weibull distribution
For strictly negative the limiting distribution converges if and only if
(is finite)
and
for all
Note that for this case the exponential term is strictly positive, since is strictly negative.
Possible sequences here are
and


Note that the second formula (the Gumbel distribution) is the limit of the first (the Fréchet distribution) as goes to zero.

Examples

Fréchet distribution

The Cauchy distribution's density function is:

and its cumulative distribution function is:

A little bit of calculus show that the right tail's cumulative distribution is asymptotic to or

so we have

Thus we have

and letting (and skipping some explanation)

for any

Gumbel distribution

Let us take the normal distribution with cumulative distribution function

We have

and thus

Hence we have

If we define as the value that exactly satisfies

then around

As increases, this becomes a good approximation for a wider and wider range of so letting we find that

Equivalently,

With this result, we see retrospectively that we need and then

so the maximum is expected to climb toward infinity ever more slowly.

Weibull distribution

We may take the simplest example, a uniform distribution between 0 and 1, with cumulative distribution function

for any x value from 0 to 1 .

For values of we have

So for we have

Let and get

Close examination of that limit shows that the expected maximum approaches 1 in inverse proportion to n .

See also

References

  1. ^ Fréchet, M. (1927). "Sur la loi de probabilité de l'écart maximum". Annales de la Société Polonaise de Mathématique. 6 (1): 93–116.
  2. ^ Fisher, R.A.; Tippett, L.H.C. (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample". Proc. Camb. Phil. Soc. 24 (2): 180–190. Bibcode:1928PCPS...24..180F. doi:10.1017/s0305004100015681. S2CID 123125823.
  3. ^ a b von Mises, R. (1936). "La distribution de la plus grande de n valeurs" [The distribution of the largest of n values]. Rev. Math. Union Interbalcanique. 1 (in French): 141–160.
  4. ^ a b Falk, Michael; Marohn, Frank (1993). "von Mises conditions revisited". The Annals of Probability: 1310–1328.
  5. ^ a b c Gnedenko, B.V. (1943). "Sur la distribution limite du terme maximum d'une serie aleatoire". Annals of Mathematics. 44 (3): 423–453. doi:10.2307/1968974. JSTOR 1968974.
  6. ^ Mood, A.M. (1950). "5. Order Statistics". Introduction to the theory of statistics. New York, NY: McGraw-Hill. pp. 251–270.
  7. ^ a b Haan, Laurens; Ferreira, Ana (2007). Extreme Value Theory: An introduction. Springer.

Further reading

Read other articles:

Lippincott's Monthly Magazine edisi 1980. Majalah sastra adalah publikasi berkala yang ditujukan untuk sastra dalam arti luas. Majalah sastra biasanya mempublikasikan cerita pendek, puisi dan esai, beserta kritik sastra, resensi buku, profil biografi penulis, wawancara, dan surat-surat. Majalah sastra sering disebut jurnal sastra, atau majalah kecil, yang tidak dimaksudkan untuk merendahkan, melainkan sebagai kontras dengan majalah-majalah yang lebih besar atau majalah komersial. Contoh majal...

 

Kenneth Ross MacKenzieMacKenzie pada tahun 1971Lahir15 Juni 1912Portland, Oregon, Amerika SerikatMeninggal3 Juli 2002(2002-07-03) (umur 90)Los Angeles, California, Amerika SerikatKebangsaanAmerika SerikatAlmamaterUniversitas British Columbia (BS, MS)Universitas California, Berkeley (PhD)Dikenal atasSintesis astatineKarier ilmiahBidangFisika nuklirInstitusiLawrence Livermore National LaboratoryUniversitas California, Los AngelesPembimbing doktoralErnest Lawrence[1] Kenneth Ross M...

 

Bernhard Caesar EinsteinLahir10 Juli 1930JermanMeninggal30 September 2008(2008-09-30) (umur 78)Amerika SerikatWarga negaraSwissAmerika SerikatPendidikanETH ZürichPekerjaanFisikawanSuami/istriAude Ascher Einstein (Swiss), M.D., Universitas ZürichAnakDr. Thomas Martin Einstein (Santa Monica, CA, AS, 1955),Paul Michael Einstein (1959) (Prancis),Eduard Albert (Ted) Einstein (1961-) (Los Angeles, CA, AS),Mira Einstein-Yehieli (1965-) (Israel),Charles Quincy Ascher Einstein (Charly) (1971-)...

العلاقات التشيكية البوتانية التشيك بوتان   التشيك   بوتان تعديل مصدري - تعديل   العلاقات التشيكية البوتانية هي العلاقات الثنائية التي تجمع بين التشيك وبوتان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة التش�...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) دوري جزر المالديف لكرة القدم الجهة المنظمة اتحاد المالديف لكرة القدم  تاريخ الإنشاء 22 ديسمبر 2014 الرياضة ...

 

Engagement during the 2022 Russian invasion of Ukraine Battle of VolnovakhaPart of the eastern Ukraine offensive of the 2022 Russian invasion of UkraineDamage from shelling in Volnovakha, 27 February 2022Date25 February – 12 March 2022(2 weeks and 1 day)LocationVolnovakha, Donetsk Oblast, UkraineResult Russian victoryBelligerents  Russia Donetsk PR  UkraineCommanders and leaders Alexei Berngard Vladimir Zhoga † Pavlo Sbytov †Units involved DPR ...

Election in Florida Main article: 1920 United States presidential election 1920 United States presidential election in Florida ← 1916 November 2, 1920 1924 →   Nominee James Cox Warren Harding Party Democratic Republican Home state Ohio Ohio Running mate Franklin D. Roosevelt Calvin Coolidge Electoral vote 6 0 Popular vote 90,515 44,853 Percentage 62.13% 30.79% County Results Cox   40–50%   50–60%   60–70% ...

 

Village in Bjelovar-Bilogora County, CroatiaVeliki MiletinacVillageVeliki MiletinacCoordinates: 45°40′55″N 17°19′14″E / 45.6819689°N 17.3204344°E / 45.6819689; 17.3204344Country CroatiaCounty Bjelovar-Bilogora CountyMunicipalityĐulovacArea[1] • Total1.4 sq mi (3.5 km2)Population (2021)[2] • Total50 • Density37/sq mi (14/km2)Time zoneUTC+1 (CET) • Summer (DST)UTC+2...

 

Seseorang yang sedang merekam hewan liar di Namibia Film dokumenter alam adalah genre film atau serial dokumenter tentang hewan, tumbuhan, atau makhluk hidup non-manusia. Biasanya video direkam di habitat aslinya, tetapi sering kali menyertakan cuplikan dari hewan terlatih atau hewan di penangkaran. Terkadang film ini membahas tentang satwa liar atau ekosistem dalam hubungannya dengan manusia. Program semacam itu paling sering dibuat untuk televisi, terutama untuk saluran penyiaran umum. Teta...

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

 

College of the University of Florida College of EducationTypePublic education schoolEstablished1906Parent institutionUniversity of FloridaEndowment$1.73 billion (2018)[1]DeanGlenn E. GoodAcademic staff108 Faculty108 StaffUndergraduates402Postgraduates1,097LocationGainesville, Florida, United States29°38′48.9″N 82°20′17.3″W / 29.646917°N 82.338139°W / 29.646917; -82.338139Websitewww.education.ufl.edu Norman Hall, Spring 2016 Norman Hall, home of the ...

 

Philipp KohlschreiberKohlschreiber at the 2016 Wimbledon ChampionshipsKebangsaan JermanTempat tinggalKitzbühel, AustriaLahir16 Oktober 1983 (umur 40)[1]Augsburg, Jerman BaratTinggi178 m (584 ft 0 in)Memulai pro2001Tipe pemainTangan kanan (one-handed backhand)PelatihMarkus HipflTotal hadiah$13,332,623 50th all-time leader in earnings TunggalRekor (M–K)474–379 (55.57% in ATP Tour events)Gelar8Peringkat tertinggiNo. 16 (30 Juli 2012)Peringkat saat iniNo...

1566 إيكاروس    المكتشف فالتر بادي  موقع الاكتشاف مرصد بالومار  تاريخ الاكتشاف 27 يونيو 1949  سمي باسم إيكاروس  الأسماء البديلة 1949 MA  فئةالكوكب الصغير كويكبات أبولو،  وحزام الكويكبات  الأوج 1.969 وحدة فلكية[1]،  و1.969530551894392 وحدة فلكية  الحضيض 0.1866664 وح�...

 

Chemical compound 16-Methylene-17α-hydroxyprogesterone acetateClinical dataOther names16-Methylene-17α-acetoxyprogesterone; 16-Methylene-17α-acetoxypregn-4-en-3,20-dioneDrug classProgestogen; Progestin; Progestogen esterIdentifiers IUPAC name [(8R,9S,10R,13S,14S,17R)-17-Acetyl-10,13-dimethyl-16-methylidene-3-oxo-1,2,6,7,8,9,11,12,14,15-decahydrocyclopenta[a]phenanthren-17-yl] acetate CAS Number6815-51-6PubChem CID151431ChemSpider133463UNIIXYO20AWR0ICompTox Dashboard (EPA)DTXSID20987647 Che...

 

منتخب غينيا الاستوائية لكرة القدم للسيدات بلد الرياضة غينيا الاستوائية  الفئة كرة القدم للسيدات  رمز الفيفا EQG  مشاركات تعديل مصدري - تعديل   منتخب غينيا الاستوائية لكرة القدم للنساء هو المنتخب الذي يمثل غينيا الاستوائية في منافسات كرة القدم للنساء، يتم إدارة شؤ...

Village and municipality in Slovakia Location of Levice District in the Nitra Region Krškany (Hungarian: Kereskény) is a village and municipality in the Levice District in the Nitra Region of Slovakia. History In historical records the village was first mentioned in 1242. According to the Urbarium of 1767 these noble families lived here: Disznóssy, Agardy, Horváthy, Pomothy, Zmeskál, Paulik and Krsák.[1] Geography The village lies at an altitude of 180 metres and covers an area ...

 

UFC mixed martial arts event in 2012 UFC 143: Diaz vs. ConditThe poster for UFC 143: Diaz vs. ConditInformationPromotionUltimate Fighting ChampionshipDateFebruary 4, 2012VenueMandalay Bay Events CenterCityLas Vegas, NevadaAttendance9,015[1]Total gate$2,400,000[1]Buyrate400,000Event chronology UFC on Fox: Evans vs. Davis UFC 143: Diaz vs. Condit UFC on Fuel TV: Sanchez vs. Ellenberger UFC 143: Diaz vs. Condit was a mixed martial arts event organized by Ultimate Fighting Champio...

 

Belgian former prime minister This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Henri Jaspar – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this message) Henri JasparJaspar in 1921Prime Minister of BelgiumIn office20 May 1926 – 6 June 1931MonarchAlbert IPrec...

Pakistani cellular operator Paktelدل تو ایک ہے There's only one heartNative nameپاکٹلCompany typeTelecommunication operatorIndustryTelecommunicationsGenreSubsidiaryFounded1989DefunctMarch 31, 2008 (2008-03-31)FateRebranded to Zong[1]SuccessorZongHeadquarters68-E Jinnah Avenue, Blue Area, Islamabad, PakistanProductsMobile telephonyWebsitehttps://paktel.com Paktel (Urdu: پاکٹل) was the pioneer cellular operator of Pakistan. It was the trend setter compa...

 

Jason BlumJason Blum di acara WonderCon bulan April 2015LahirJason Ferus Blum20 Februari 1969 (umur 55)Los Angeles, California, Amerika SerikatPekerjaanProduserTahun aktif1995–sekarangSuami/istriLauren A. E. Schuker (m. 2012) Jason Ferus Blum (lahir 20 Februari 1969)[1][2] merupakan seorang produser Amerika Serikat sekaligus pendiri dan CEO dari Blumhouse Productions. Ia menang Primetime Emmy Award kategori film televisi terbaik untuk film televisi The Normal Hear...