Fire skink

Fire skink
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Family: Scincidae
Genus: Lepidothyris
Species:
L. fernandi
Binomial name
Lepidothyris fernandi
(Burton, 1836)
Synonyms[2]
  • Tiliqua fernandi
    Burton, 1836
  • Lygosoma fernandi
    Boulenger
  • Lepidothyris fernandi
    Cope, 1892
  • Lygosoma fernandi
    Bocage, 1895
  • Riopa fernandi
    Loveridge, 1936
  • Mochlus fernandi
    Mittleman, 1952
  • Lepidothyris fernandi
    Wagner et al., 2009
  • Mochlus fernandi
    Freitas et al., 2019

The fire skink (Lepidothyris fernandi), also known commonly as Fernand's skink, the Togo fire skink, and the true fire skink, is a fairly large skink, a species of lizard in the family Scincidae. The species is known for its bright and vivid coloration. Native to tropical forests in West and Central Africa, the fire skink lives fifteen to twenty years. This species is a diurnal lizard that burrows and hides. It is relatively shy and reclusive, but may become tame in captivity.

Etymology

The specific name, fernandi, refers to the island formerly known as Fernando Po,[3] which has been called Bioko since 1979. It is known in the Yoruba language, spoken in Western Africa, as Oloronto.[citation needed]

Taxonomy

Historically, the fire skink has been placed in several different genera and was until recently placed in Riopa together with several skinks from southeast Asia. While these are superficially similar to the African fire skink, they are closer to some other Asian skinks, resulting in their move to Mochlus. The fire skink is not closely related to other skinks and belongs to the genus Mochlus.[4] However, a review of the taxonomy of the fire skink did reveal that it, as traditionally defined, actually consists of three separate species. This essentially limits true M. fernandi to tropical West Africa and westernmost Central Africa, while population in Central and East Africa are M. hinkeli and M. striatus.[5]

Distribution

Mochlus fernandi occurs in the humid forest zone of southern West and Central Africa, from Guinea and Sierra Leone to Gabon[1][5] and the Democratic Republic of the Congo.[1]

Subspecies

Two subspecies are recognized as being valid, including the nominotypical subspecies:[2]

Nota bene: A trinomial authority in parentheses indicates that the subspecies was originally described in a genus other than Mochlus.

Description

The fire skink is a fairly large species of skink, reaching up to 37 cm (15 in) in total length (including tail).[2] The most notable aspect of the fire skink's appearance is its vivid, bright colors. Smooth, gold scales adorn the fire skink's back, while red and black bars set against a silver background line its sides. The fire skink does not display obvious sexual dimorphism, which makes it difficult to sex. Males are, in general, bulkier than females with a slightly flatter head and wider jaws.[6]

Reproduction

The fire skink is oviparous. An adult female will generally lay a clutch of five to nine eggs after mating. Fire skink eggs take forty to fifty days to hatch when incubated at a temperature of 85 °F (29 °C).[citation needed]

Diet

M. fernandi has a large appetite, and it is mainly insectivorous.[7] Insects such as crickets, and larvae such as mealworms, are used for feeding captive specimens.[6]

In captivity

The fire skink is kept as a pet. Many specimens available for sale are wild-caught, but captive-bred skinks are available. The fire skink requires a larger tank with plenty of horizontal space, as well as some vertical space for its occasional tendency to climb. A 40 gallon (150 liter) aquarium is suitable for one adult. The fire skink is not social and should be kept alone. [6] It also requires a loose substrate for burrowing. The environment should be moist and humid, with plenty of ground cover to create hiding places. One end of the tank should be warmed with a lamp for basking. Live insects are a proper diet, and some keepers provide an occasional pinkie mouse.[6]

References

  1. ^ a b c Wagner, P.; Segniagbeto, G.; Rödel, M.-O. (2021). "Mochlus fernandi ". IUCN Red List of Threatened Species. 2021: e.T13152763A13152770. doi:10.2305/IUCN.UK.2021-2.RLTS.T13152763A13152770.en. Retrieved 26 March 2022.
  2. ^ a b c Mochlus fernandi at the Reptarium.cz Reptile Database. Accessed 26 March 2022.
  3. ^ Beolens, Bo; Watkins, Michael; Grayson, Michael (2011). The Eponym Dictionary of Reptiles. Baltimore: Johns Hopkins University Press. xiii + 296 pp. ISBN 978-1-4214-0135-5. (Lygosoma fernandi, p. 89).
  4. ^ Freitas, Elyse S.; Datta-Roy, Aniruddha; Karanth, Praveen; Grismer, L. Lee; Siler, Cameron D. (2019). "Multilocus phylogeny and a new classification for African, Asian and Indian supple and writhing skinks (Scincidae: Lygosominae)". Zoological Journal of the Linnean Society. 186 (4): 1067–1096. doi:10.1093/zoolinnean/zlz001.
  5. ^ a b Wagner, P [in German]; Böhme, W [in German]; Pauwels, OSG [in French] & Schmitz, A [in French] (2009). "A review of the African red-flanked skinks of the Lygosoma fernandi (BURTON, 1836) species group (Squamata: Scincidae) and the role of climate change in their speciation". Zootaxa. 2050 (1): 1–30. doi:10.11646/zootaxa.2050.1.1.
  6. ^ a b c d The African fire skink. Reptiles Magazine.
  7. ^ "African Fire Skink". Reptile Range. Retrieved 9 August 2022.

Further reading

  • Boulenger GA (1887). Catalogue of the Lizards in the British Museum (Natural History). Second Edition. Volume III. ... Scincidæ ... London: Trustees of the British Museum (Natural History). (Taylor and Francis, printers). xii + 575 pp. + Plates I-XL. (Lygosoma fernandi, pp. 304-305).
  • Burton E (1836). "A Saurian Reptile of the family Scincidæ and of the genus Tiliqua, Gray". Proceedings of the Zoological Society of London 1836: 62. (Tiliqua fernandi, new species). (in English and Latin).
  • Hallowell E (1845). "Description of New Species of African Reptiles". Proceedings of the Academy of Natural Sciences of Philadelphia 2: 169-172. (Plestiodon harlani, new species, p. 170).


Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. Bandar udara Ivalo merupakan desa di Munisipalitas Inari, di Laplandia, letak Ivalo sekitar 20 km selatan Danau Inari. Penduduknya berjumlah 3.983 jiwa (2003) dan bandara kecil. 30 km Ivalo selatan terletak sangat terkenal tempat waktu luang be...

 

 

Liga 3 Sulawesi Tengah 2020Negara IndonesiaTanggal penyelenggaraanDibatalkan← 2019 2021 → Liga 3 Sulawesi Tengah 2020 Tadinya menjadi edisi keempat dari Liga 3 Sulawesi Tengah yang diselenggarakan oleh Asprov PSSI Sulawesi Tengah, Namun karena pandemi COVID-19 kompetisi edisi 2020 batal dilaksanakan. Pestu Tojo Unauna merupakan juara bertahan setelah menjuarainya di musim 2019.

 

 

العلاقات البوروندية الرومانية بوروندي رومانيا   بوروندي   رومانيا تعديل مصدري - تعديل   العلاقات البوروندية الرومانية هي العلاقات الثنائية التي تجمع بين بوروندي ورومانيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...

Magelang beralih ke halaman ini. Untuk kabupaten bernama sama, lihat Kabupaten Magelang. Untuk kegunaan lain, lihat Magelang (disambiguasi). Kota MagelangKotaTranskripsi bahasa daerah • Hanacarakaꦩꦒꦼꦭꦁ • Pegonماڬلاڠ • Alfabet JawaMagêlangKlenteng Liong Hok BioPatung Pengeran Diponegoro di Alun-alun Magelang BenderaLambangJulukan: Kota MiliterKota GetukKota Sejuta BungaPetaKota MagelangPetaTampilkan peta JawaKota Magelang...

 

 

National Medal of ScienceDeskripsiKontribusi luar biasa dalam bidang fisika, biologi, matematika, teknik sosial dan ilmu perilakuLokasiWashington, D.C.NegaraAmerika SerikatDipersembahkan olehPresiden AmerikaDiberikan perdana1963Situs webhttp://www.nsf.gov/od/nms/medal.jsp National Medal of Science (bahasa Indonesia: Medali Sains Nasional) adalah suatu penghormatan yang diberikan oleh Presiden Amerika Serikat kepada individu dalam bidang sains dan teknik yang telah memberikan kontribusi pentin...

 

 

1987 television series This article is about the 1987 animated adaptation by Nippon Animation. For the 1981 animated adaptation by Toei Animation see Little Women (1981 TV series). For all other uses see Little Women (disambiguation) Tales of Little WomenThe March sisters, clockwise from upper left: Jo, Meg (in chair), Amy, and Beth.愛の若草物語(Ai no Wakakusa Monogatari)GenreHistorical drama, Civil war drama Anime television seriesDirected byFumio KurokawaProduced byJunzō Na...

Pour les articles homonymes, voir Bonald (homonymie). Louis de BonaldPortrait par Julien Léopold Boilly.FonctionsPrésidentConseil général de l'Aveyron (d)1825-1826Pair de France23 décembre 1823 - juillet 1830PrésidentConseil général de l'Aveyron (d)1821-1823Fauteuil 30 de l'Académie française21 mars 1816 - 23 novembre 1840Jean-Jacques-Régis de CambacérèsJacques-François AncelotDéputé de l'Aveyron22 août 1815 - 23 décembre 1823Maire de Millau6 août 1785 - 20 juillet 1790Tit...

 

 

Most westerly island in the Inner Hebrides of Scotland For other uses, see Tyree (disambiguation). TireeScottish Gaelic nameTiriodhPronunciation[ˈtʲʰiɾʲəɣ] ⓘOld Norse nameTyrvistMeaning of nameGaelic for 'land of corn' Sun of Barley flag adopted in 2018 LocationTireeTiree shown within Argyll and ButeOS grid referenceNL999458Coordinates56°30′N 6°53′W / 56.5°N 6.88°W / 56.5; -6.88Physical geographyIsland groupMullArea7,834 ha (30+1⁄4&#...

 

 

Family of flowering plants Crypteroniaceae Dactylocladus stenostachys (Hooker's Icones Plantarum) Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: CrypteroniaceaeA.DC.[1] The Crypteroniaceae are a family of flowering trees and shrubs. The family includes 13 species in three genera,[2] native to Indomalaya. Genera There are three genera of Crypteroniaceae, all native to Asian tropical forest...

الديوان الملكي السعودي الديوان الملكي (السعودية) تفاصيل الوكالة الحكومية البلد السعودية  تأسست 1924 المركز الرياض ،  السعودية الإدارة المدير التنفيذي فهد بن محمد بن صالح العيسى، رئيس الديوان الملكي السعودي موقع الويب الموقع الرسمي تعديل مصدري - تعديل   الديوان المل�...

 

 

1994 film TrevorFilm posterDirected byPeggy RajskiWritten byCeleste LecesneProduced byRandy StonePeggy RajskiStarringBrett BarskyCinematographyMarc ReshovskyEdited byJohn TintoriRelease date 1994 (1994) Running time23 minutesCountryUnited StatesLanguageEnglish Trevor is a 1994 American short film directed by Peggy Rajski, produced by Randy Stone and Peggy Rajski, and written by Celeste Lecesne.[a] Set in 1981, the film follows what happens to 13-year-old Trevor, a Diana Ross fan,...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) القوات البرية الملكية الأردنية الدولة  الأردن التأسيس 1920  فرع من القوات المسلحة الأردنية  الفروع...

New Zealand mayoral election 1980 Christchurch mayoral election ← 1977 11 October 1980 1983 → Turnout51,319 (46.13%)   Candidate Hamish Hay Mollie Clark Party Citizens Labour Popular vote 27,357 23,082 Percentage 53.30 44.98 Mayor before election Hamish Hay Elected Mayor Hamish Hay The 1980 Christchurch mayoral election was part of the New Zealand local elections held that same year. In 1980, election were held for the Mayor of Christchurch plus other local gov...

 

 

Species of annelid worm Sternaspis scutata Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Annelida Clade: Pleistoannelida Clade: Sedentaria Order: Terebellida Family: Sternaspidae Genus: Sternaspis Species: S. scutata Binomial name Sternaspis scutata(Ranzani, 1817)[1] Synonyms[1] Thalassema scutatus Ranzani, 1817 Sternaspis scutata is a species of marine polychaete worm in the family Sternaspidae. It occurs in the Mediterranean Sea and the temperate...

 

 

US Open 2018Doppio mistoSport Tennis Detentoridel titolo Bethanie Mattek-Sands Jamie Murray Finalisti Alicja Rosolska Nikola Mektić Punteggio2–6, 6–3, [11–9] Tornei Singolare uomini (q) donne (q)   ragazzi ragazze Doppio uomini donne misto ragazzi ragazze Singolare carrozzina uomini donne quad Doppio carrozzina uomini donne quad 2017 2019 Voce principale: US Open 2018. Martina Hingis e Jamie Murray erano i detentori del titolo, ma Hingis si è ritirata al termine della stagione 20...

談山神社のけまり祭 蹴鞠(けまり / しゅうきく[1])は、球技の一つ。本項では、中国にかつて存在した類似する球技についても解説する。 概要 2枚の鹿革を馬革で縫い合わせて作る鞠[1]を一定の高さ(身長の2.5倍が限度)で蹴り続け、その回数を追求する球技である。 日本の平安時代に流行し、鎌倉時代から室町時代前期に芸道として完成され、現代まで�...

 

 

مشتاق أحمد كرماني   مناصب وزير الداخلية   في المنصب26 نوفمبر 1951  – 24 أكتوبر 1954  معلومات شخصية الميلاد سنة 1905   تاريخ الوفاة سنة 1981 (75–76 سنة)  مواطنة باكستان الراج البريطاني  الحياة العملية المهنة سياسي  اللغة الأم الأردية  اللغات الأردية  تعديل مصد...

 

 

Composition technique For other uses, see Rule of thirds (diving) and Rule of three (disambiguation). The photograph demonstrates the application of the rule of thirds. The horizon in the photograph is on the horizontal line dividing the lower third of the photo from the upper two-thirds. The tree is at the intersection of two lines, sometimes called a power point[1] or a crash point.[2] The rule of thirds is a rule of thumb for composing visual images such as designs, films, ...

Nuclear physics Nucleus Nucleons p n Nuclear matter Nuclear force Nuclear structure Nuclear reaction Models of the nucleus Liquid drop Nuclear shell model Interacting boson model Ab initio Nuclides' classification Isotopes – equal Z Isobars – equal A Isotones – equal N Isodiaphers – equal N − Z Isomers – equal all the above Mirror nuclei – Z ↔ N Stable Magic Even/odd Halo Borromean Nuclear stability Binding energy p–n ratio Drip line Island of stability Valley...

 

 

Geometry problem about finding touching circles Figure 1: A solution (in purple) to Apollonius's problem. The given circles are shown in black. Figure 2: Four complementary pairs of solutions to Apollonius's problem; the given circles are black. In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga (c. 262 BC – c. 190 BC) posed and solved this famous problem in his work Ἐπαφαί ...