Fire skink
|
Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. Bandar udara Ivalo merupakan desa di Munisipalitas Inari, di Laplandia, letak Ivalo sekitar 20 km selatan Danau Inari. Penduduknya berjumlah 3.983 jiwa (2003) dan bandara kecil. 30 km Ivalo selatan terletak sangat terkenal tempat waktu luang be...
Liga 3 Sulawesi Tengah 2020Negara IndonesiaTanggal penyelenggaraanDibatalkan← 2019 2021 → Liga 3 Sulawesi Tengah 2020 Tadinya menjadi edisi keempat dari Liga 3 Sulawesi Tengah yang diselenggarakan oleh Asprov PSSI Sulawesi Tengah, Namun karena pandemi COVID-19 kompetisi edisi 2020 batal dilaksanakan. Pestu Tojo Unauna merupakan juara bertahan setelah menjuarainya di musim 2019.
العلاقات البوروندية الرومانية بوروندي رومانيا بوروندي رومانيا تعديل مصدري - تعديل العلاقات البوروندية الرومانية هي العلاقات الثنائية التي تجمع بين بوروندي ورومانيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...
Magelang beralih ke halaman ini. Untuk kabupaten bernama sama, lihat Kabupaten Magelang. Untuk kegunaan lain, lihat Magelang (disambiguasi). Kota MagelangKotaTranskripsi bahasa daerah • Hanacarakaꦩꦒꦼꦭꦁ • Pegonماڬلاڠ • Alfabet JawaMagêlangKlenteng Liong Hok BioPatung Pengeran Diponegoro di Alun-alun Magelang BenderaLambangJulukan: Kota MiliterKota GetukKota Sejuta BungaPetaKota MagelangPetaTampilkan peta JawaKota Magelang...
National Medal of ScienceDeskripsiKontribusi luar biasa dalam bidang fisika, biologi, matematika, teknik sosial dan ilmu perilakuLokasiWashington, D.C.NegaraAmerika SerikatDipersembahkan olehPresiden AmerikaDiberikan perdana1963Situs webhttp://www.nsf.gov/od/nms/medal.jsp National Medal of Science (bahasa Indonesia: Medali Sains Nasional) adalah suatu penghormatan yang diberikan oleh Presiden Amerika Serikat kepada individu dalam bidang sains dan teknik yang telah memberikan kontribusi pentin...
1987 television series This article is about the 1987 animated adaptation by Nippon Animation. For the 1981 animated adaptation by Toei Animation see Little Women (1981 TV series). For all other uses see Little Women (disambiguation) Tales of Little WomenThe March sisters, clockwise from upper left: Jo, Meg (in chair), Amy, and Beth.愛の若草物語(Ai no Wakakusa Monogatari)GenreHistorical drama, Civil war drama Anime television seriesDirected byFumio KurokawaProduced byJunzō Na...
Pour les articles homonymes, voir Bonald (homonymie). Louis de BonaldPortrait par Julien Léopold Boilly.FonctionsPrésidentConseil général de l'Aveyron (d)1825-1826Pair de France23 décembre 1823 - juillet 1830PrésidentConseil général de l'Aveyron (d)1821-1823Fauteuil 30 de l'Académie française21 mars 1816 - 23 novembre 1840Jean-Jacques-Régis de CambacérèsJacques-François AncelotDéputé de l'Aveyron22 août 1815 - 23 décembre 1823Maire de Millau6 août 1785 - 20 juillet 1790Tit...
Most westerly island in the Inner Hebrides of Scotland For other uses, see Tyree (disambiguation). TireeScottish Gaelic nameTiriodhPronunciation[ˈtʲʰiɾʲəɣ] ⓘOld Norse nameTyrvistMeaning of nameGaelic for 'land of corn' Sun of Barley flag adopted in 2018 LocationTireeTiree shown within Argyll and ButeOS grid referenceNL999458Coordinates56°30′N 6°53′W / 56.5°N 6.88°W / 56.5; -6.88Physical geographyIsland groupMullArea7,834 ha (30+1⁄4...
Family of flowering plants Crypteroniaceae Dactylocladus stenostachys (Hooker's Icones Plantarum) Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: CrypteroniaceaeA.DC.[1] The Crypteroniaceae are a family of flowering trees and shrubs. The family includes 13 species in three genera,[2] native to Indomalaya. Genera There are three genera of Crypteroniaceae, all native to Asian tropical forest...
الديوان الملكي السعودي الديوان الملكي (السعودية) تفاصيل الوكالة الحكومية البلد السعودية تأسست 1924 المركز الرياض ، السعودية الإدارة المدير التنفيذي فهد بن محمد بن صالح العيسى، رئيس الديوان الملكي السعودي موقع الويب الموقع الرسمي تعديل مصدري - تعديل الديوان المل�...
1994 film TrevorFilm posterDirected byPeggy RajskiWritten byCeleste LecesneProduced byRandy StonePeggy RajskiStarringBrett BarskyCinematographyMarc ReshovskyEdited byJohn TintoriRelease date 1994 (1994) Running time23 minutesCountryUnited StatesLanguageEnglish Trevor is a 1994 American short film directed by Peggy Rajski, produced by Randy Stone and Peggy Rajski, and written by Celeste Lecesne.[a] Set in 1981, the film follows what happens to 13-year-old Trevor, a Diana Ross fan,...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) القوات البرية الملكية الأردنية الدولة الأردن التأسيس 1920 فرع من القوات المسلحة الأردنية الفروع...
New Zealand mayoral election 1980 Christchurch mayoral election ← 1977 11 October 1980 1983 → Turnout51,319 (46.13%) Candidate Hamish Hay Mollie Clark Party Citizens Labour Popular vote 27,357 23,082 Percentage 53.30 44.98 Mayor before election Hamish Hay Elected Mayor Hamish Hay The 1980 Christchurch mayoral election was part of the New Zealand local elections held that same year. In 1980, election were held for the Mayor of Christchurch plus other local gov...
Species of annelid worm Sternaspis scutata Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Annelida Clade: Pleistoannelida Clade: Sedentaria Order: Terebellida Family: Sternaspidae Genus: Sternaspis Species: S. scutata Binomial name Sternaspis scutata(Ranzani, 1817)[1] Synonyms[1] Thalassema scutatus Ranzani, 1817 Sternaspis scutata is a species of marine polychaete worm in the family Sternaspidae. It occurs in the Mediterranean Sea and the temperate...
US Open 2018Doppio mistoSport Tennis Detentoridel titolo Bethanie Mattek-Sands Jamie Murray Finalisti Alicja Rosolska Nikola Mektić Punteggio2–6, 6–3, [11–9] Tornei Singolare uomini (q) donne (q) ragazzi ragazze Doppio uomini donne misto ragazzi ragazze Singolare carrozzina uomini donne quad Doppio carrozzina uomini donne quad 2017 2019 Voce principale: US Open 2018. Martina Hingis e Jamie Murray erano i detentori del titolo, ma Hingis si è ritirata al termine della stagione 20...
談山神社のけまり祭 蹴鞠(けまり / しゅうきく[1])は、球技の一つ。本項では、中国にかつて存在した類似する球技についても解説する。 概要 2枚の鹿革を馬革で縫い合わせて作る鞠[1]を一定の高さ(身長の2.5倍が限度)で蹴り続け、その回数を追求する球技である。 日本の平安時代に流行し、鎌倉時代から室町時代前期に芸道として完成され、現代まで�...
مشتاق أحمد كرماني مناصب وزير الداخلية في المنصب26 نوفمبر 1951 – 24 أكتوبر 1954 معلومات شخصية الميلاد سنة 1905 تاريخ الوفاة سنة 1981 (75–76 سنة) مواطنة باكستان الراج البريطاني الحياة العملية المهنة سياسي اللغة الأم الأردية اللغات الأردية تعديل مصد...
Composition technique For other uses, see Rule of thirds (diving) and Rule of three (disambiguation). The photograph demonstrates the application of the rule of thirds. The horizon in the photograph is on the horizontal line dividing the lower third of the photo from the upper two-thirds. The tree is at the intersection of two lines, sometimes called a power point[1] or a crash point.[2] The rule of thirds is a rule of thumb for composing visual images such as designs, films, ...
Nuclear physics Nucleus Nucleons p n Nuclear matter Nuclear force Nuclear structure Nuclear reaction Models of the nucleus Liquid drop Nuclear shell model Interacting boson model Ab initio Nuclides' classification Isotopes – equal Z Isobars – equal A Isotones – equal N Isodiaphers – equal N − Z Isomers – equal all the above Mirror nuclei – Z ↔ N Stable Magic Even/odd Halo Borromean Nuclear stability Binding energy p–n ratio Drip line Island of stability Valley...
Geometry problem about finding touching circles Figure 1: A solution (in purple) to Apollonius's problem. The given circles are shown in black. Figure 2: Four complementary pairs of solutions to Apollonius's problem; the given circles are black. In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga (c. 262 BC – c. 190 BC) posed and solved this famous problem in his work Ἐπαφαί ...