Feynman sprinkler

Comparison of a regular sprinkler (1) and a reverse sprinkler (2)

A Feynman sprinkler, also referred to as a Feynman inverse sprinkler or reverse sprinkler, is a sprinkler-like device which is submerged in a tank and made to suck in the surrounding fluid. The question of how such a device would turn was the subject of an intense and remarkably long-lived debate. The device generally remains steady with no rotation, though with sufficiently low friction and high rate of inflow, it has been seen to turn weakly in the opposite direction of a conventional sprinkler.

A regular sprinkler has nozzles arranged at angles on a freely rotating wheel such that when water is pumped out of them, the resulting jets cause the wheel to rotate; a Catherine wheel and the aeolipile ("Hero's engine") work on the same principle. A "reverse" or "inverse" sprinkler would operate by aspirating the surrounding fluid instead. The problem is commonly associated with theoretical physicist Richard Feynman, who mentions it in his bestselling memoirs Surely You're Joking, Mr. Feynman!. The problem did not originate with Feynman, nor did he publish a solution to it.

History

Illustration 153a from Ernst Mach's Mechanik (1883) When the hollow rubber ball is squeezed, air flows in the direction of the short arrows and the wheel turns in the direction of the long arrow. When the rubber ball is released, the direction of the flow of the air is reversed but Mach observed "no distinct rotation" of the device.

The first documented treatment of the problem is in chapter III, section III, of Ernst Mach's textbook The Science of Mechanics, first published in 1883.[1] There Mach reported that the device showed "no distinct rotation."[2] In the early 1940s (and apparently without awareness of Mach's earlier discussion), the problem began to circulate among members of the physics department at Princeton University, generating a lively debate. Richard Feynman, at the time a young graduate student at Princeton, built a makeshift experiment within the facilities of the university's cyclotron laboratory. The experiment ended with the explosion of the glass carboy that he was using as part of his setup.

In 1966, Feynman turned down an offer from the editor of Physics Teacher to discuss the problem in print and objected to it being called "Feynman's problem," pointing instead to the discussion of it in Mach's textbook.[3] The sprinkler problem attracted a great deal of attention after the incident was mentioned in Surely You're Joking, Mr. Feynman!, a book of autobiographical reminiscences published in 1985.[4] Feynman gave one argument for why the sprinkler should rotate in the forward direction, and another for why it should rotate in reverse; he did not say how or if the sprinkler actually moved. In an article written shortly after Feynman's death in 1988, John Wheeler, who had been his doctoral advisor at Princeton, revealed that the experiment at the cyclotron had shown “a little tremor as the pressure was first applied [...] but as the flow continued there was no reaction.”[5] The sprinkler incident is also discussed in James Gleick's biography of Feynman, Genius, published in 1992 where Gleick claims that a sprinkler will not turn at all if made to suck in fluid.[6]

In 2005, physicist Edward Creutz (who was in charge of the Princeton cyclotron at the time of the incident) revealed in print that he had assisted Feynman in setting up his experiment and that, when pressure was applied to force water out of the carboy through the sprinkler head,

There was a little tremor, as [Feynman] called it, and the sprinkler head rapidly moved back to its original position and stayed there. The water flow continued with the sprinkler stationary. We adjusted the pressure to increase the water flow, about five separate times, and the sprinkler did not move, although water was flowing freely through it in the backwards direction [...] The carboy then exploded, due to the internal pressure. A janitor then appeared and helped me clean up the shattered glass and mop up the water. I don't know what [Feynman] had expected to happen, but my vague thoughts of a time reversal phenomenon were as shattered as the carboy.[7]

The question

In his book, Feynman recites the question:[4]

The problem: You have an S-shaped lawn sprinkler–an S-shaped pipe on a pivot –and the water squirts out at right angles to the axis and makes it spin in a certain direction. Everybody knows which way it goes around; it backs away from the outgoing water. Now the question is this: If you had a lake, or swimming pool–a big supply of water–and you put the sprinkler completely under water, and sucked the water in, instead of squirting it out, which way would it turn? Would it turn the same way as it does when you squirt water out into the air, or would it turn the other way?

Solution

The behavior of the reverse sprinkler is qualitatively quite distinct from that of the ordinary sprinkler, and one does not behave like the other "played backwards". Most of the published theoretical treatments of this problem have concluded that the ideal reverse sprinkler will not experience any torque in its steady state. It may be understood in terms of conservation of angular momentum: in its steady state, the amount of angular momentum carried by the incoming fluid is constant, which implies that there is no torque on the sprinkler itself.

Alternatively, in terms of forces on an individual sprinkler nozzle, consider Mach's illustration. There:

  • the reaction force on the nozzle as it sucks in the fluid, pulling the nozzle anti-clockwise;
  • the inflowing water impacting on the inside of the nozzle, pushing the nozzle clockwise.

The two forces are equal and opposite, so sucking in the fluid causes no net force on the sprinkler nozzle. This is similar to the pop pop boat when it sucks in water—the inflowing water transfers its momentum to the boat, so sucking in water causes no net force on the boat.[8][9]

Many experiments, going back to Mach, find no rotation of the reverse sprinkler. In setups with sufficiently low friction and high rate of inflow, the reverse sprinkler has been seen to turn weakly in the opposite sense to the conventional sprinkler, even in its steady state.[10][11] Such behavior could be explained by the diffusion of momentum in a non-ideal (i.e., viscous) flow.[9] However, careful observation of experimental setups shows that this turning is associated with the formation of a vortex inside the body of the sprinkler.[12] An analysis of the actual distribution of forces and pressure in a non-ideal reverse sprinkler provides the theoretical basis to explain this:

Differences in the regions over which internal and external forces act constitute a force-couple with different moment arms consistent with reverse rotation... the resulting flow-field asymmetry developed downstream from the sprinkler-arm bends supports the role of vortices in reverse sprinkler rotation by suggesting a mechanism for generating vortices in a consistent direction.[13]

References

  1. ^ Mach, Ernst (1883). Die Mechanik in Ihrer Entwicklung Historisch-Kritisch Dargerstellt (in German). Leipzig: F. A. Brockhaus. Available in English as The Science of Mechanics: A Critical and Historical Account of its Development (3rd ed.). Chicago: Open Court. 1919. pp. 299–301.
  2. ^ Mach, Ernst (1919). The Science of Mechanics: A Critical and Historical Account of its Development. Translated by McCormack, Thomas J. (3rd ed.). Chicago: Open Court. pp. 301.
  3. ^ Feynman, Richard P. (April 5, 2005). Ferynman, Michelle (ed.). Perfectly Reasonable Deviations from the Beaten Track: The Letters of Richard P. Feynman. New York: Basic Books. pp. 209–211. ISBN 0-465-02371-1.
  4. ^ a b Feynman, Richard P. (1985). Surely You're Joking, Mr. Feynman!. New York: W. W. Norton. pp. 63–65.
  5. ^ Wheeler, John Archibald (1989). "The young Feynman". Physics Today. 42 (2): 24–28. Bibcode:1989PhT....42b..24W. doi:10.1063/1.881189.
  6. ^ Gleick, James (1992). Genius: The Life and Science of Richard Feynman. New York: Pantheon. pp. 106–108. ISBN 978-0-679-74704-8.
  7. ^ Creutz, Edward C. (2005). "Feynman's reverse sprinkler". American Journal of Physics. 73 (3): 198–199. Bibcode:2005AmJPh..73..198C. doi:10.1119/1.1842733.
  8. ^ Jenkins, Alejandro (May 3, 2004). "An elementary treatment of the reverse sprinkler". American Journal of Physics. 72 (10): 1276–1282. arXiv:physics/0312087. Bibcode:2004AmJPh..72.1276J. doi:10.1119/1.1761063. S2CID 119430653.
  9. ^ a b Jenkins, Alejandro (2011). "Sprinkler head revisited: momentum, forces, and flows in Machian propulsion". European Journal of Physics. 32 (5): 1213–1226. arXiv:0908.3190. Bibcode:2011EJPh...32.1213J. doi:10.1088/0143-0807/32/5/009. S2CID 118379711.
  10. ^ Wang, Kaizhe; Sprinkle, Brennan; Zuo, Mingxuan; Ristroph, Leif (26 January 2024). "Centrifugal Flows Drive Reverse Rotation of Feynman's Sprinkler". Physical Review Letters. 132 (4): 044003. Bibcode:2024PhRvL.132d4003W. doi:10.1103/PhysRevLett.132.044003. Retrieved 1 February 2024.
  11. ^ "How Does a "Reverse Sprinkler" Work? Researchers Solve Decades-Old Physics Puzzle". NYU. Retrieved 1 February 2024.
  12. ^ Rueckner, Wolfgang (2015). "The puzzle of the steady-state rotation of a reverse sprinkler" (PDF). American Journal of Physics. 83 (4): 296–304. Bibcode:2015AmJPh..83..296R. doi:10.1119/1.4901816. S2CID 32075644.
  13. ^ Beals, Joseph (2017). "New angles on the reverse sprinkler: Reconciling theory and experiment". American Journal of Physics. 85 (3): 166–172. Bibcode:2017AmJPh..85..166B. doi:10.1119/1.4973374.

Read other articles:

Mycobacterium leprae Gambar Mycobacterium leprae dari lesi kulit. Klasifikasi ilmiah Kerajaan: Bacteria Filum: Actinobacteria Ordo: Actinomycetales Subordo: Corynebacterineae Famili: Mycobacteriaceae Genus: Mycobacterium Spesies: M. leprae Nama binomial Mycobacterium lepraeHansen, 1874 Mycobacterium leprae, juga disebut Basillus Hansen, adalah bakteri yang menyebabkan penyakit kusta (penyakit Hansen).[1] Bakteri ini merupakan bakteri intraselular.[2] M. leprae merupakan ...

 

Målselv kommune Málatvuomi suohkanMunisipalitasView of the mountain Istind on the Bardu-Målselv border Lambang kebesaranTroms di NorwayLetak Målselv di TromsNegara NorwegiaCountyTromsDistrictMidt-TromsAdministrative centreMoenPemerintahan • Mayor (2011)Helene Rognli (H)Luas • Total3.321,72 km2 (128,252 sq mi) • Luas daratan3.206,97 km2 (123,822 sq mi) • Luas perairan114,75 km2 (4,431 sq ...

 

Piala FA 1974–1975Negara Inggris WalesJuara bertahanLiverpoolJuaraWest Ham United(gelar ke-2)Tempat keduaFulham← 1973–1974 1975–1976 → Piala FA 1974–1975 adalah edisi ke-94 dari penyelenggaraan Piala FA, turnamen tertua dalam sepak bola di Inggris. Edisi ini dimenangkan oleh West Ham United setelah mengalahkan Fulham pada pertandingan final dengan skor 2–0. Final Artikel utama: Final Piala FA 1975 West Ham United v Fulham 3 Mei 1975 West Ham United 2–0 Fulham Laporan...

Voce principale: UEFA Champions League 2020-2021. Finale della UEFA Champions League 2020-2021Lo stadio do Dragão di Porto, teatro della finaleInformazioni generaliSport Calcio CompetizioneChampions League 2020-21 Data29 maggio 2021 CittàPorto ImpiantoStadio do Dragão Spettatori14 110[1] Dettagli dell'incontro  Manchester City  Chelsea 0 1 Arbitro Antonio Mateu Lahoz[2] MVP N'Golo Kanté Successione ← Finale della UEFA Champions League 2019-2020 F...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أغسطس 2020) معزر التنشيط القائم على التيروزين (ITAM) هو تسلسل محفوظ لأربعة أحماض أمينية ت�...

 

Questa voce o sezione sull'argomento stadi di calcio d'Italia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Gino Salveti Informazioni generaliStato Italia UbicazioneVia Appia Nuova,03043 Cassino (FR) Inizio lavori1963 Inaugurazione1967 Costo300.000.000 £ ProprietarioComune di Cassino ProgettoBruno Magrelli e Paolo Teresi Informazioni tecnichePost...

Paola ColonnaSignora consorte di PiombinoStemma In carica1399 – 1404 Predecessore(nuovo titolo) SuccessoreDonella Fieschi Signora reggente di PiombinoIn carica1404 – 1419(per il figlio Jacopo II Appiano) Signore di PiombinoIn carica27 dicembre 1441 – 30 novembre 1445 PredecessoreJacopo II Appiano SuccessoreCaterina Appiano con il marito Rinaldo Orsini NascitaGenazzano, 1380 MortePiombino, 30 novembre 1445 SepolturaDuomo di Piombino DinastiaColonna PadreAgapito Colonna MadreCaterin...

 

Part of a series on theAnthropology of kinship Basic concepts Family Lineage Affinity Consanguinity Marriage Incest taboo Endogamy Exogamy Moiety Monogamy Polygyny Polygamy Concubinage Polyandry Bride price Bride service Dowry Parallel / cross cousins Cousin marriage Levirate Sororate Posthumous marriage Joking relationship Clan Cohabitation Fictive / Milk / Nurture kinship Descent Cognatic / Bilateral Matrilateral Lineal Collateral House society Avunculate...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Biografi ini tidak memiliki referensi atau sumber sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Anwas – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Untuk tokoh ini dalam sudut pandang Yahudi, lihat ...

 

ثنائي كرومات الصوديوم ثنائي كرومات الصوديوم الاسم النظامي (IUPAC) ثنائي كرومات صوديوم المعرفات رقم CAS 7789-12-0 بوب كيم 25408،  و129628287  مواصفات الإدخال النصي المبسط للجزيئات [O-][Cr](=O)(=O)O[Cr](=O)(=O)[O-].[Na+].[Na+][1]  المعرف الكيميائي الدولي InChI=1S/2Cr.2Na.7O/q;;2*+1;;;;;;2*-1[1]  InChIKey:KIEOKOFEPABQKJ-U...

 

Islamic Development BankSingkatanIsDBTanggal pendirian1975 (1975)TipeBank pembangunanLokasiJeddah, Arab SaudiJumlah anggota 57 negaraTokoh pentingMuhammed Al-Jasser, PresidenJumlah Karyawan 932Situs webwww.isdb.org Islamic Development Bank (Bahasa Arab: البنك الإسلامي للتنمية) adalah sebuah lembaga keuangan pembangunan multilateral yang fokus menyediakan pembiayaan syariah untuk pembangunan infrastruktur. Bank ini berkantor pusat di Jeddah, Arab Saudi.[2] Terd...

Misi sui iuris Kepulauan Cayman (bahasa Latin: Missio sui iuris Insularum Caimanensium) adalah sebuah misi sui iuris Ritus Latin dari Gereja Katolik Roma di Karibia. Misi tersebut melingkupi seluruh dependensi Inggris Kepulauan Cayman, dan terdiri dari lima paroki, yang meliputi Santo Ignatius di George Town, Gereja Kristus Penebus di West Bay dan Gereja Stella Maris di Cayman Brac.[1] Pemimpin Kardinal Adam Joseph Maida (2000-2009) Allen Henry Vigneron (2009-sekarang) Referensi ...

 

رياضياتصنف فرعي من علوم شكلية، علوم دقيقةجزء من العلوم والتكنولوجيا والهندسة والرياضيات[1] — علوم شكلية[2] — علوم دقيقة[3][4] يمتهنه رياضياتيفروع رياضيات بحتة، رياضيات تطبيقيةالاستعمالات  القائمة ... علم[5] — نمذجة رياضية[5] — هندسة — تمويل[6] �...

 

Family of carnivorous plants Lentibulariaceae Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Lamiales Family: LentibulariaceaeRich.[1] Genera GenliseaPinguiculaUtricularia Lentibulariaceae is a family of carnivorous plants containing three genera: Genlisea, the corkscrew plants; Pinguicula, the butterworts; and Utricularia, the bladderworts. The genera Polypompholyx (two species of pink petticoats or fairy apro...

ماركسية لينينيةمعلومات عامةصنف فرعي من ماركسيةلينينية سُمِّي باسم كارل ماركسفلاديمير لينين لديه جزء أو أجزاء مادية جدليةمادية تاريخيةالاقتصاد الماركسيشيوعية علمية تعديل - تعديل مصدري - تعديل ويكي بيانات الماركسية اللينينية هي تيار إيديولوجي شيوعي برز كاتجاه سائد بين ا�...

 

«Genus» redirige aquí. Para otras acepciones, véase Genus (desambiguación). Dominio Reino Filo odivisión Clase Orden Familia Género Especie Categorías taxonómicas principales En taxonomía, el género es una categoría taxonómica que se ubica entre la familia y la especie; así, un género es un grupo de organismos que a su vez puede dividirse en varias especies (existen algunos géneros que son monoespecíficos, es decir, contienen una sola especie). El término proviene del latín...

 

Nicu PopescuPopescu di UNGA 2019 Wakil Perdana MenteriPetahanaMulai menjabat 6 Agustus 2021PresidenMaia SanduPerdana MenteriNatalia GavrilițaMenteri Urusan Luar Negeri dan Integrasi EropaPetahanaMulai menjabat 6 Agustus 2021PresidenMaia SanduPerdana MenteriNatalia GavrilițaPendahuluAureliu CiocoiPenggantiPetahanaMasa jabatan11 Juni 2019 – 14 November 2019PresidenIgor DodonPerdana MenteriMaia SanduPendahuluTudor UlianovschiPenggantiAureliu Ciocoi Informasi pribadiLahir25 A...

218th Brigade218th Independent Infantry Brigade (Home)281th Independent Infantry BrigadeFormation sign worn by 218th Independent Infantry Brigade.[1]Active1916–8 April 191821 October 1940-10 November 1942Country United KingdomBranch British ArmyTypeInfantry BrigadeRoleTraining and Home DefenceInsigniaBadge worn when in the Yorkshire County DivisionMilitary unit The 218th Brigade was a Home Service formation of the British Army during the First and the Second World Wars. First W...

 

What We Talk About When We Talk About Love Edisi IndonesiaPengarangRaymond CarverNegaraAmerika SerikatBahasaInggrisPenerbitKnopfTanggal terbit1981Jenis mediaPrintingHalaman176 What We Talk About When We Talk About Love adalah sebuah koleksi cerita pendek yang terbit tahun 1981 di Amerika Serikat. Penulis What We Talk About When We Talk About Love adalah Raymond Carver. Pemberian judul berasal dari salah satu cerita dalam koleksi ini.[1][2] Referensi ^ Books of The Ti...