FC Ekibastuzets
|
Read other articles:
Pulau Kundur (berwarna merah) Kundur merupakan sebuah pulau yang terletak di Kabupaten Karimun, Provinsi Kepulauan Riau, Indonesia. Pulau Kundur terdiri dari 3 kecamatan dari 12 Kecamatan yang ada di Kabupaten Karimun yaitu Kecamatan Kundur yang beribukota di Tanjungbatu, Kecamatan Kundur Barat yang beribukota di Sawang dan Kecamatan Kundur Utara beribukota di Tanjungberlian. Sebelah barat Pulau Kundur berbatasan langsung dengan Provinsi Riau tepatnya dengan Pulau Mendol (Penyalai) Kabupaten ...
Peta menunjukan lokasi Kalilangan Kalilangan adalah munisipalitas yang terletak di provinsi Bukidnon, Filipina. Pada tahun 2000, munisipalitas ini memiliki populasi sebesar 36.557 jiwa atau 5.873 rumah tangga. Pembagian wilayah Kalilangan terbagi menjadi 14 barangay, yaitu: Bangbang Baborawon Canituan Kibaning Kinura Lampanusan Maca-opao Malinao Pamotolon (Pamotdon) central Poblacion Public Ninoy Aquino San Vicente Ferrer West Poblacion Pranala luar Philippine Standard Geographic Code Diarsip...
Khas juris doctor diploma, di sini dari Suffolk University Law School Sekolah hukum (dikenal dengan pendidikan ilmu hukum atau sekolah tinggi hukum) adalah sebuah lembaga yang mengkhususkan diri dalam pendidikan hukum, biasanya terlibat sebagai bagian dari proses seseorang untuk menjadi pengacara dalam suatu yurisdiksi. Indonesia Sarjana hukum di Indonesia terdiri dari tiga tingkat. Tingkat pertama adalah strata satu (S1) dengan gelar Sarjana Hukum/S.H. Hal ini dapat diperoleh dalam kurun wak...
Governo Depretis IV Stato Italia Presidente del ConsiglioAgostino Depretis(Sinistra storica) CoalizioneSinistra storica LegislaturaXV Giuramento29 maggio 1881 Dimissioni22 maggio 1883 Governo successivoDepretis V25 maggio 1883 Cairoli III Depretis V Il governo Depretis IV è stato in carica dal 29 maggio 1881[1] al 25 maggio 1883 per un totale di 726 giorni, ovvero 1 anno, 11 mesi e 26 giorni. Indice 1 Compagine di governo 1.1 Appartenenza politica 2 Composizione 3 Cronologia 4 N...
SicanosInformación geográficaÁrea cultural SiciliaEquivalencia actual Sicilia, ItaliaInformación antropológicaIdioma SicanoAsentamientos importantes Herbita, Camicus, Agirio, Adrano, Enna, Omfaces [editar datos en Wikidata] Los sicanos (griego Σικανοί, Sikanoí) fueron unos antiguos pobladores que se asentaron en Sicilia, al parecer, en algún momento de la Edad del Bronce. Tucídides (vi, 2) escribe que, tras los cíclopes y lestrigones, los sicanos fueron los siguiente...
Kansas Jayhawks softballFounded1969UniversityUniversity of KansasHead coachJennifer McFalls (5th season)ConferenceBig 12LocationLawrence, KSHome stadiumArrocha Ballpark at Rock Chalk Park (Capacity: 1100)NicknameJayhawksColorsCrimson and blue[1] NCAA WCWS appearances1992AIAW WCWS appearances1972, 1973, 1974, 1975, 1976, 1977, 1979NCAA Tournament appearances1983, 1985, 1986, 1992, 1993, 1994, 1997, 1999, 2005, 2006, 2014, 2015Conference Tournament champi...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) كأس النرويج 1930 تفاصيل الموسم كأس النرويج النسخة 29 البلد النرويج المنظم اتحاد النرويج لكرة القد...
Буквы со сходным начертанием: η · ⴄ Буква латиницы N с длинной правой ножкой Ƞƞ Изображение ◄ Ȝ ȝ Ȟ ȟ Ƞ ȡ Ȣ ȣ Ȥ ► ◄ ƚ ƛ Ɯ Ɲ ƞ Ɵ Ơ ơ Ƣ ► Характеристики Название Ƞ: latin capital letter n with long right legƞ: latin small letter n with long right leg Юникод Ƞ: U+0220ƞ: U+019E HTML-код Ƞ̴...
Electoral district in New South Wales, Australia Australian electorate WollondillyNew South Wales—Legislative AssemblyInteractive map of district boundaries from the 2023 state electionStateNew South WalesDates current1904–19812007–presentMPJudy HannanPartyIndependentNamesakeWollondillyElectors57,397 (2019)Area3,327.48 km2 (1,284.7 sq mi)DemographicOuter-metropolitan and rural Electorates around Wollondilly: Bathurst Blue Mountains Badgerys Creek Bathurst Wollondilly...
Cet article est une ébauche concernant le curling et Glasgow. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Championnat du monde féminin de curling 1988 Généralités Sport Curling Édition 10e Lieu(x) Glasgow Royaume-Uni Date Du 4 au 10 avril 1988 Nations 10 Palmarès Vainqueur Allemagne de l'Ouest Navigation Édition précédente Édition suivante modifier Le Championnat du monde féminin de curling 1988,...
Genre of literature This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (March 2017) This article needs additional citations for verification. Please help improve this article by adding citations to r...
Government body established during the Chinese Cultural Revolution Inaugural meeting of the Beijing Revolutionary Committee, 1967. Revolutionary committees (Chinese: 革命委员会; pinyin: Gémìng wěiyuánhuì) were tripartite bodies established during the Cultural Revolution (1966–1976) in the People's Republic of China to facilitate government by the three mass organizations in China – the people, the People's Liberation Army (PLA), and the Chinese Communist Party (CCP). The...
Animation production arm of comic book publisher Harvey Comics The Harvey Entertainment CompanyTitle cardCompany typeSubsidiaryIndustryAnimated TV showsTheatrical feature filmsFounded1957; 67 years ago (1957)Defunct2001; 23 years ago (2001)FateAssets sold to Classic MediaSuccessorHarvey Entertainment, Inc. (Classic Media)HeadquartersUnited StatesProductsCasper the Friendly GhostRichie RichBaby HueyLittle DotLittle AudreyLittle LottaWendy the Good Little Wit...
クビワトカゲ科 クビワトカゲ Crotaphytus collaris 分類 ドメイン : 真核生物 Eukaryota 界 : 動物界 Animalia 門 : 脊索動物門 Chordata 亜門 : 脊椎動物亜門 Vertebrata 綱 : 爬虫綱 Reptilia 目 : 有鱗目 Squamata 亜目 : トカゲ亜目 Sauria(側系統群) 下目 : イグアナ下目 Iguania 上科 : イグアナ上科 Pleurodonta 科 : クビワトカゲ科 Crotaphytidae H.M. Smith & Brodie, 1982 和名 クビワトカゲ科[1] 下位...
Assemblies of twenty-three or seventy-one Jewish elders For other uses, see Sanhedrin (disambiguation). The Sanhedrin, from an 1883 encyclopedia Part of a series onJudaism Movements Orthodox Haredi Hasidic Modern Conservative Conservadox Reform Karaite Reconstructionist Renewal Humanistic Haymanot Philosophy Principles of faith Kabbalah Messiah Ethics Chosenness God Names Musar movement Texts Tanakh Torah Nevi'im Ketuvim Ḥumash Siddur Piyutim Zohar Rabbinic Mishnah Talmud Midras...
Disambiguazione – Se stai cercando altri significati, vedi Istria (disambigua). Istria(SL, HR) Istra(IT) Istria Vista su Pola Stati Croazia Slovenia Italia Regioni Istriana Litoraneo-montanaLitorale-Carso Friuli-Venezia-Giulia (2 comuni della provincia di Trieste) Linguecroato, sloveno, italiano, istrioto, veneto Fusi orariUTC+1 Nome abitantiistriani Cartina politica dell'Istria all'interno di Italia, Slovenia e Croazia Istria L'Istria (in croato e sloveno Istra, in...
Statistic quantifying the association between two events This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2024) (Learn how and when to remove this message) An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence...
1954年9月时,时任第一届全国人大代表的徐肖冰 徐肖冰(1916年—2009年10月27日),男,浙江桐乡人,中华人民共和国摄影师、政治人物,曾担任北京电影制片厂、中央新闻纪录电影制片厂摄影师。1954年,当选第一届全国人民代表大会代表[1]。 家庭 妻子侯波。[2] 参考 ^ 全国人民代表大会常务委员会办公厅. 中华人民共和国第一届全国人民代表大会代表名单. 全国�...
Bischoffsheimcomune Bischoffsheim – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Basso Reno ArrondissementMolsheim CantoneMolsheim TerritorioCoordinate48°29′N 7°29′E48°29′N, 7°29′E (Bischoffsheim) Altitudine149 e 362 m s.l.m. Superficie12,36 km² Abitanti3 337[1] (2009) Densità269,98 ab./km² Altre informazioniCod. postale67870 Fuso orarioUTC+1 Codice INSEE67045 CartografiaBischoffsheim Sito istituzionaleModifica dati s...
Type of (mathematical) permutation with no fixed element For other uses, see Cyclic (mathematics). In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle.[1][2] In some cases, cyclic permutations are referred to as cycles;[3] if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial ...