F.C. Ramat HaSharon

F.C. Ramat HaSharon
Full nameFootball Club Ramat HaSharon
מועדון כדורגל רמת השרון
Founded2005
GroundGrundman Stadium, Ramat HaSharon
Capacity4,300
ManagerSharon Paz
LeagueLigat Nashim
2023–246th

F.C. Ramat HaSharon (Hebrew: מועדון כדורגל רמת השרון) is an Israeli women's football club from Ramat HaSharon competing in the Israeli First League and the Israeli Women's Cup.

History

The club was established in 2005 joined the league, playing its first season in the northern group, eventually finishing first in the group and qualifying to the championship group, where, by the end of the season the club finished as runners-up. In the following seasons the club finished in the 4th and 5th position, before relegating to the second division at the end of the 2009–10 season.

The club played two seasons in the second division, finishing top of the league in its second season and promoting back to the top division. During this season the club won the second division league cup, completing a minor double.

In the cup, the club's best achievement is reaching the final in 2013, losing 1–7 to Maccabi Holon.[1] The club reached the semi-finals following season, falling 0–1 to Maccabi Kishronot Hadera.

Squad

Titles


References

  1. ^ Women's Football: Maccabi Holon Is the State Cup Holder 1 May 2013, ynet.co.il (in Hebrew)

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) منتخب المجر لكرة القدم الشاطئية رمز الفيفا HUN  مشاركات تعديل مصدري - تعديل   منتخب المجر لكرة القدم ال�...

 

Million Dollar CrocodileSutradaraLin LishengProduserLi RuiDitulis olehLin LishengMa HuaMa YuPemeranBarbie HsuGuo TaoLam SuetShi ZhaoqiXiong XinxinPenata musikDong DongdongSinematograferLi XiPenyuntingZhou XinxiaWei NanTanggal rilis 8 Juni 2012 (2012-06-08) (China) Durasi87 menitNegaraChinaAnggaranUS$4.7 juta[1] Million Dollar Crocodile adalah sebuah film monster Tiongkok 2012 yang disutradarai oleh Lin Lisheng. Film tersebut dibintangi oleh Barbie Hsu, Guo Tao, Lam Suet...

 

Unités de résistance de SinjarYBŞ Idéologie Confédéralisme démocratique Objectifs Protection des populations yézidies Statut Actif Site web ybs-yjs.com Fondation Date de formation 2014 Pays d'origine Irak Actions Zone d'opération Kurdistan irakien Organisation Chefs principaux Sheikh Khairy Khedr †Mazlum Shengal Membres 6 000[1] Groupe relié PKK, YJÊ, HPG, YPG, YPJ, HPÊ Seconde guerre civile irakienne modifier  Les Unités de résistance de Sinjar (kurde : Ye...

The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Less Than an Hour – news · newspapers · books · scholar · JSTOR (April 20...

 

Conflict in Libya (1923–1932) This article is about the conflict between Italian forces and indigenous rebels in 1923–1932. For the genocide of Libyans in 1929–1934, see Libyan genocide. It has been suggested that Libyan genocide be merged into this article. (Discuss) Proposed since January 2024. You can help expand this article with text translated from the corresponding article in German. Click [show] for important translation instructions. Machine translation, like DeepL or Google Tr...

 

Hôtel de la Païva Hôtel de la Païva adalah rumah pribadi Paris yang dibangun antara tahun 1856 dan 1865 di 25, avenue des Champs-Élysées oleh Païva, lahir Esther Lachman (1819-1884), petualang Rusia asal Polandia yang sangat sederhana, yang menjadi marquise Portugis, kemudian menjadi countess Prusia. Dia biasa memberikan pesta terkenal di sana.[1] Pada tahun 1903, Klub Pelancong pindah ke bekas kediaman mewah yang dimiliki klub pria ini sejak tahun 1923.[2] Catatan ^ UN...

2007 Las Vegas mayoral election ← 2003 April 3, 2007 2011 →   Candidate Oscar Goodman Tom McGowan Popular vote 26,845 2,170 Percentage 83.69% 6.76% Mayor before election Oscar Goodman Elected Mayor Oscar Goodman Elections in Nevada Federal government U.S. President 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 Dem GOP 1916 Dem GOP 1920 Dem GOP 1924 Dem GOP 1928 Dem GOP 1932 Dem GOP 1936 Dem GOP 1940 Dem GOP 1944 Dem GOP 1948 Dem GOP 1952 Dem...

 

2020年夏季奥林匹克运动会马来西亚代表團马来西亚国旗IOC編碼MASNOC马来西亚奥林匹克理事会網站olympic.org.my(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員30參賽項目10个大项旗手开幕式:李梓嘉和吳柳螢(羽毛球)[1][2]閉幕式:潘德莉拉(跳水)[3]獎牌榜排名第74 金牌 銀牌 銅�...

 

You can help expand this article with text translated from the corresponding article in French. (May 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or low-qua...

History and regulations of Emirati citizenship Federal Law No.17 of 1972Parliament of the United Arab Emirates Long title An Act relating to Emirati citizenship Enacted byGovernment of the United Arab EmiratesStatus: Current legislation Emirati nationality law governs citizenship eligibility in the United Arab Emirates (UAE).[1][2][3] The law is primarily jus sanguinis. Foreigners who meet certain criteria may be naturalized and granted citizenship.[4] Gul...

 

Metropolitan Area in Indiana, United StatesGreater Lafayette–West LafayetteMetropolitan AreaLafayette–West Lafayette, INMetropolitan Statistical AreaDowntown Lafayette and the Riehle Plaza and CityBus depotLafayette–West Lafayette–Frankfort, IN CSA   City of Lafayette   City of West Lafayette   Lafayette–West Lafayette MSA   Frankfort µSA  Monticello µSA Country United StatesState IndianaLargest cityLafayetteOther cities ...

 

Colloquial term for the US heartland A street in West Point, Indiana, in October 2010 Middle America is a colloquial term for the United States heartland, especially the culturally suburban areas of the United States, typically the Lower Midwestern region of the country, which consists of Ohio, Indiana, Iowa, Nebraska, Kansas, Missouri, and downstate Illinois. Middle America is generally used as both a geographic and cultural label, suggesting a central United States small town or suburb that...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of railway lines in Japan J to P – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message) This article needs to be updated. The reason given is: Names of lines have been updated. Please help update th...

 

Commercial building in Manhattan, New York Engineering Societies' Building and Engineers' Club redirects here. For the other building in the historic site, see Engineers' Club Building. Engineering Societies' BuildingGeneral informationArchitectural styleNeoclassicalLocation25–33 West 39th Street, Manhattan, New York, USCoordinates40°45′09″N 73°59′02″W / 40.75250°N 73.98389°W / 40.75250; -73.98389Opened1907Renovated1963ClientAmerican Society of Mechanical...

 

Pedro Sanjurjo Pedro Sanjurjo Presidente de la Junta General del Principado de Asturias 27 de abril de 2012-25 de junio de 2019Predecesor Fernando Goñi MerinoSucesor Marcelino Marcos Diputado en la Junta General del Principado de Asturiaspor la circunscripción central de Asturias 27 de abril de 2012-25 de junio de 2019 Concejal del Ayuntamiento de Gijón 4 de julio de 1999-11 de junio de 2011 Información personalNombre completo Pedro Sanjurjo GonzálezNacimiento 20 de marzo de 1958 (66 añ...

Nadir ZorteaNazionalità Italia Altezza175 cm Peso70 kg Calcio RuoloDifensore Squadra Atalanta CarrieraGiovanili 2011-2013 Feltreseprealpi2013-2014→  Südtirol2014-2016 Atalanta2016-2017→  Vicenza2017-2019 Atalanta Squadre di club1 2019-2021→  Cremonese52 (1)2021-2022→  Salernitana29 (1)2022-2023 Atalanta9 (1)2023→  Sassuolo10 (0)2023-2024 Atalanta5 (1)2024→  Frosinone14 (1)2024- Atalanta0 (0) 1 I due numeri ind...

 

Subterranean passageways used as burial place For other uses, see Catacombs (disambiguation). A procession in the San Callistus catacombs in Rome, painted by Alberto Pisa Catacombs are human-made underground passages primarily used for religious purposes, particularly for burial. Any chamber used as a burial place is considered a catacomb, although the word is most commonly associated with the Roman Empire.[1][2] Etymology and history The first place to be referred to as catac...

 

L'hydromorphologie (du grec υδρο, hydro = eau, morphe la forme et λόγος, logos, l’étude) est l'étude scientifique de la partie de la géomorphologie qui est due à l'eau (hydrologie). Antelope Canyon, Arizona, creusé par des crues puissantes en contexte désertique dans la formation de grès Navajo (Navajo Sandstone) Méandres du Nowitna - affluent du Yukon (Alaska, États-Unis) Le cirque de Navacelles (Grands Causses : paysage de plateau karstique et de méandre recoupé C...

Didier Drogba Drogba en 2019. Biographie Nom Didier Yves Drogba Tébily[1] Nationalité Ivoirien Français Nat. sportive Ivoirien Naissance 11 mars 1978 (46 ans) Abidjan (Côte d'Ivoire) Taille 1,89 m (6′ 2″) Période pro. 1998 - 2018 Poste Avant-centre Pied fort Droit Parcours junior Années Club 1988-1989 USL Dunkerque 1989-1990 SC Abbeville 1990-1991 US Tourcoing 1991-1993 Vannes OC 1993-1997 Levallois SC 1997-1998 Le Mans FC Parcours senior1 AnnéesClub 0M.0(B.) 1998-2...

 

Graph divided into two independent sets Example of a bipartite graph without cycles A complete bipartite graph with m = 5 and n = 3 The Heawood graph is bipartite. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U {\displaystyle U} and V {\displaystyle V} , that is, every edge connects a vertex in U {\displaystyle U} to one in V {\displaystyle V} . Vertex sets U {\displaystyle U} and V {\...