Extraneous and missing solutions

In mathematics, an extraneous solution (or spurious solution) is one which emerges from the process of solving a problem but is not a valid solution to it.[1] A missing solution is a valid one which is lost during the solution process. Both situations frequently result from performing operations that are not invertible for some or all values of the variables involved, which prevents the chain of logical implications from being bidirectional.

Extraneous solutions: multiplication

One of the basic principles of algebra is that one can multiply both sides of an equation by the same expression without changing the equation's solutions. However, strictly speaking, this is not true, in that multiplication by certain expressions may introduce new solutions that were not present before. For example, consider the following equation:

If we multiply both sides by zero, we get,

This is true for all values of , so the solution set is all real numbers. But clearly not all real numbers are solutions to the original equation. The problem is that multiplication by zero is not invertible: if we multiply by any nonzero value, we can reverse the step by dividing by the same value, but division by zero is not defined, so multiplication by zero cannot be reversed.

More subtly, suppose we take the same equation and multiply both sides by . We get

This quadratic equation has two solutions: and But if is substituted for in the original equation, the result is the invalid equation . This counterintuitive result occurs because in the case where , multiplying both sides by multiplies both sides by zero, and so necessarily produces a true equation just as in the first example.

In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that expression is equal to zero. But it is not sufficient to exclude these values, because they may have been legitimate solutions to the original equation. For example, suppose we multiply both sides of our original equation by We get

which has only one real solution: . This is a solution to the original equation so cannot be excluded, even though for this value of .

Extraneous solutions: rational

Extraneous solutions can arise naturally in problems involving fractions with variables in the denominator. For example, consider this equation:

To begin solving, we multiply each side of the equation by the least common denominator of all the fractions contained in the equation. In this case, the least common denominator is . After performing these operations, the fractions are eliminated, and the equation becomes:

Solving this yields the single solution However, when we substitute the solution back into the original equation, we obtain:

The equation then becomes:

This equation is not valid, since one cannot divide by zero. Therefore, the solution is extraneous and not valid, and the original equation has no solution.

For this specific example, it could be recognized that (for the value ), the operation of multiplying by would be a multiplication by zero. However, it is not always simple to evaluate whether each operation already performed was allowed by the final answer. Because of this, often, the only simple effective way to deal with multiplication by expressions involving variables is to substitute each of the solutions obtained into the original equation and confirm that this yields a valid equation. After discarding solutions that yield an invalid equation, we will have the correct set of solutions. In some cases, as in the above example, all solutions may be discarded, in which case the original equation has no solution.

Missing solutions: division

Extraneous solutions are not too difficult to deal with because they just require checking all solutions for validity. However, more insidious are missing solutions, which can occur when performing operations on expressions that are invalid for certain values of those expressions.

For example, if we were solving the following equation, the correct solution is obtained by subtracting from both sides, then dividing both sides by :

By analogy, we might suppose we can solve the following equation by subtracting from both sides, then dividing by :

The solution is in fact a valid solution to the original equation; but the other solution, , has disappeared. The problem is that we divided both sides by , which involves the indeterminate operation of dividing by zero when

It is generally possible (and advisable) to avoid dividing by any expression that can be zero; however, where this is necessary, it is sufficient to ensure that any values of the variables that make it zero also fail to satisfy the original equation. For example, suppose we have this equation:

It is valid to divide both sides by , obtaining the following equation:

This is valid because the only value of that makes equal to zero is which is not a solution to the original equation.

In some cases we are not interested in certain solutions; for example, we may only want solutions where is positive. In this case it is okay to divide by an expression that is only zero when is zero or negative, because this can only remove solutions we do not care about.

Other operations

Multiplication and division are not the only operations that can modify the solution set. For example, take the problem:

If we take the positive square root of both sides, we get:

We are not taking the square root of any negative values here, since both and are necessarily positive. But we have lost the solution The reason is that is actually not in general the positive square root of If is negative, the positive square root of is If the step is taken correctly, it leads instead to the equation:

This equation has the same two solutions as the original one: and

We can also modify the solution set by squaring both sides, because this will make any negative values in the ranges of the equation positive, causing extraneous solutions.

See also

References

  1. ^ Larson, Ron (1 January 2011). Calculus I with Precalculus. Cengage Learning. pp. 4–. ISBN 978-0-8400-6833-0.

Read other articles:

Richard SorgeRichard Sorge tahun 1940JulukanRamsayLahir4 Oktober 1895Baku, Kekaisaran RusiaMeninggal7 November 1944(1944-11-07) (umur 49)Tokyo, Kekaisaran JepangPengabdian German Empire (sampai 1918) USSR (mulai 1920)Dinas/cabangAngkatan Darat Kekaisaran JermanAngkatan Darat Soviet (GRU)Lama dinasJerman 1914–1916, Uni Soviet 1920–1941PenghargaanPahlawan Uni SovietOrdo LeninSalib Besi, kelas II (untuk kampanye Perang Dunia I)PasanganChristiane Gerlach (1921–1929) Rich...

 

Pour les articles homonymes, voir Anet. « Jean Schopfer » redirige ici. Pour les autres significations, voir Jean Schopfer (homonymie). Claude AnetClaude Anet en 1920.BiographieNaissance 28 mai 1868MorgesDécès 9 janvier 1931 (à 62 ans)7e arrondissement de ParisNom de naissance Jean Édouard SchopferPseudonyme Claude AnetNationalité françaiseFormation Université de ParisÉcole du LouvreActivités Écrivain, journaliste, joueur de tennis, scénaristeEnfant Leïla Claude-...

 

PortugalAssociationPortuguese Cricket FederationInternational Cricket CouncilICC statusAssociate member[1] (2017)ICC regionEuropeICC Rankings Current[2] Best-everT20I 39th 39th (25 July 2023)International cricketFirst international19 August 1997 v Greece at Zuoz, SwitzerlandTwenty20 InternationalsFirst T20Iv  Spain at La Manga Club, Cartagena; 25 October 2019Last T20Iv  Gibraltar at Europa Sports Park, Gibraltar; 7 May 2023T20Is Played Won/LostTotal[3] ...

Cet article ne doit pas être confondu avec l'une de ses composantes, la Cour de justice, ni avec la Cour européenne des droits de l'homme. Voir aussi : Cour européenne et Tribunal européen. Cour de justice de l'Union européenne Situation Création 1952 Ancien nom Cour de justice de la Communauté européenne du charbon et de l’acier (jusqu’en 1958)Cour de justice des Communautés européennes (1959 – 30 novembre 2009) Type Ensemble des organes juridictionnels de l'Union europ...

 

Cet article est une ébauche concernant une commune de l’Eure. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. Consultez également la page d’aide à...

 

Henry CavillCavill pada tahun 2011LahirHenry William Dalgliesh Cavill5 Mei 1983 (umur 40)Jersey, Kepulauan ChannelKebangsaanBritania RayaPekerjaanAktorTahun aktif2001–sekarang Henry William Dalgliesh Cavill (/ˈkævəl/; lahir 5 Mei 1983) adalah aktor Inggris. Ia dikenal karena perannya sebagai Charles Brandon di Showtime The Tudors (2007–2010), DC Comics character Superman dalam DC Extended Universe, Geralt of Rivia dalam Netflix seri fantasi The Witcher (2019–sekarang), dan...

Largest Norman castle in Ireland (ruin), Trim, County Meath This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2014) (Learn how and when to remove this message) This article needs additional citations for...

 

Ford FalconUna Falcon station wagon 2 porte del 1962Descrizione generaleCostruttore Ford Tipo principaleBerlina Altre versioniStation wagon; Pick-up; Coupé; Convertibile Produzionedal 1960 al 1970 Sostituita daFord Maverick Altre caratteristicheAltroStessa famigliaFord RancheroFord MustangGAZ-24[1]GAZ-3102[2]GAZ-31029[3]GAZ-3110[4]GAZ-31105[5] Auto similiAMC RamblerChevrolet CorvairPlymouth ValiantStudebaker Lark La Ford Falcon è un'autovett...

 

Shōjo manga series Sakura Hime: The Legend of Princess SakuraVolume one of the Japanese version, featuring Sakura桜姫華伝(Sakura Hime Kaden)GenreFantasy, romance[1] MangaWritten byArina TanemuraPublished byShueishaEnglish publisherViz MediaImprintRibon Mascot ComicsMagazineRibonDemographicShōjoOriginal runDecember 1, 2008 – December 2012Volumes12 Sakura Hime: The Legend of Princess Sakura (Japanese: 桜姫華伝, Hepburn: Sakura Hime Kaden, lit. The Legend of Princes...

Cultura danubiana es un término historiográfico, acuñado por Vere Gordon Childe para denominar a la primera cultura neolítica de Europa Central y Oriental. Incluye la cultura de la cerámica de bandas (Linearbandkeramik -LBK-), la cultura de la cerámica decorada a punzón, punteada o puntillada (Stichbandkeramik -STK o STbK-)[1]​ y la cultura de Rössen. El comienzo de la primera de ellas, la de la cerámica de bandas, se data en torno al 5500 a. C. Parece haberse expandi...

 

German political foundation linked to the Green Party This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may contain excessive or inappropriate references to self-published sources. Please help improve it by removing references to unreliable sources where they are used inappropriately. (August 2015) (Learn how and when to remove this message) This article contains content that i...

 

Protected area in New South Wales, AustraliaThe Charcoal Tank Nature ReserveNew South WalesThe Charcoal Tank Nature ReserveThe Charcoal Tank Nature ReserveNearest town or cityWest WyalongCoordinates33°59′S 147°09′E / 33.983°S 147.150°E / -33.983; 147.150EstablishedMay 1966 (1966-05)[1]Area0.86 km2 (0.3 sq mi)[1]Managing authoritiesNSW National Parks & Wildlife ServiceWebsiteThe Charcoal Tank Nature Reserve The Charc...

Communication to start a relationship with someone or to get sexual contact Male blackbuck, Antilope cervicapra, courting a female A courtship display is a set of display behaviors in which an animal, usually a male, attempts to attract a mate; the mate exercises choice, so sexual selection acts on the display. These behaviors often include ritualized movement (dances), vocalizations, mechanical sound production, or displays of beauty, strength, or agonistic ability.[1][2][...

 

Emperor of Japan from 1643 to 1654 Emperor Go-Kōmyō後光明天皇Go-Kōmyō by Otagi MichitomiEmperor of JapanReignNovember 14, 1643 – October 30, 1654CoronationDecember 2, 1643PredecessorMeishōSuccessorGo-SaiShōguns See list Tokugawa IemitsuTokugawa Ietsuna BornTsuguhito (紹仁)April 20, 1633Tokugawa shogunate(now Japan)DiedOctober 30, 1654(1654-10-30) (aged 21)Tokugawa shogunateBurialTsuki no wa no misasagi, KyotoSpouseNiwata HidekoIssuePrincess TakakoPosthumous nameTsuigō:Emp...

 

「勤労者」はこの項目へ転送されています。雑誌については「勤労者 (雑誌)」をご覧ください。 この記事は特に記述がない限り、日本国内の法令について解説しています。また最新の法令改正を反映していない場合があります。ご自身が現実に遭遇した事件については法律関連の専門家にご相談ください。免責事項もお読みください。 19世紀の労働者 労働者(ろうど...

Former railway station in Flintshire, Wales Connah's QuayHolyhead main line near site of Connah's Quay station, Photo from 1994General informationLocationConnah's Quay, FlintshireWalesCoordinates53°13′17″N 3°03′40″W / 53.2214°N 3.0610°W / 53.2214; -3.0610Grid referenceSJ291699Platforms2Other informationStatusDisusedHistoryOriginal companyChester and Holyhead RailwayPre-groupingLondon and North Western RailwayPost-groupingLondon, Midland and Scottish Railway...

 

تحتوي هذه المقالة صُورًا ملوَّنة أو سوداء وبيضاء ذات تباين، انتبه إلى معايرة شاشة العرض بدقة للتمكن من رؤية التفاصيل. إلى اليمين: يجب أن تكون قادرًا على رؤية ثلاث أو أربع دوائر رمادية بتدرجات مختلفة على خلفية سوداء، بخلاف ذلك أعد ضبط إعدادت الظل في شاشة العرض. إلى اليسار: ي...

 

Compositional technique in music This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (November 2022) (Learn how and when to remove this message) This article may contain an excessive amount of intricate detail that may interest only ...

This article is about the town. For the county, see Litchfield County, Connecticut. For the borough, see Litchfield (borough), Connecticut. Town in Connecticut, United StatesLitchfield, ConnecticutTownTown of LitchfieldCommercial blocks on West Street SealMotto(s): Unitas Sub Lege (Latin)Unity Under the Law Litchfield County and Connecticut Northwest Hills Planning Region and ConnecticutShow LitchfieldShow ConnecticutShow the United StatesCoordinates: 41°44′50″N 73°11′2...

 

Geometric tiling Rhombitriheptagonal tiling Poincaré disk model of the hyperbolic plane Type Hyperbolic uniform tiling Vertex configuration 3.4.7.4 Schläfli symbol rr{7,3} or r { 7 3 } {\displaystyle r{\begin{Bmatrix}7\\3\end{Bmatrix}}} Wythoff symbol 3 | 7 2 Coxeter diagram or Symmetry group [7,3], (*732) Dual Deltoidal triheptagonal tiling Properties Vertex-transitive In geometry, the rhombitriheptagonal tiling is a semiregular tiling of the hyperbolic plane. At each vertex of the ti...