An expendable launch system (or expendable launch vehicle/ELV) is a launch vehicle that can be launched only once, after which its components are destroyed during reentry or impact with Earth, or discarded in space. ELVs typically consist of several rocket stages that are discarded sequentially as their fuel is exhausted and the vehicle gains altitude and speed. As of 2024, fewer and fewer satellites and human spacecraft are launched on ELVs in favor of reusable launch vehicles.[1] However, there are many instances where a ELV may still have a compelling use case over a reusable vehicle. ELVs are simpler in design than reusable launch systems and therefore may have a lower production cost. Furthermore, an ELV can use its entire fuel supply to accelerate its payload, offering greater payloads. ELVs are proven technology in widespread use for many decades.[2]
European space launches are carried out as a collaborative effort between private companies and government agencies. The role of Arianespace is to market Ariane 6 launch services, prepare missions, and manage customer relations. At the Guiana Space Centre (CSG) in French Guiana, the company oversees the team responsible for integrating and preparing launch vehicles.
The rockets themselves are designed and manufactured by other companies: ArianeGroup for the Ariane 6 and Avio for the Vega. The launch infrastructure at the CSG is owned by the European Space Agency, while the land itself belongs to and is managed by CNES, the French national space agency.
As of May 2021[update], Arianespace had launched more than 850 satellites in 287 missions spanning 41 years. The company's first commercial launch was Spacenet 1, which took place on 23 May 1984. In addition to its facilities at the CSG, the company's main offices are in Évry-Courcouronnes, a suburb of Paris.
Lijian-1 small to medium-lift solid fuel launch vehicle currently in service (by the commercial spin-off of the Chinese Academy of Sciences)
Lijian-2 medium-lift launch vehicle utilizing liquid fuel (kerolox) with reusable first stage under development
CZ-2E(A) Intended for launch of Chinese space station modules. Payload capacity up to 14 tons in LEO and 9000 (kN) liftoff thrust developed by 12 rocket engines, with enlarged fairing of 5.20 m in diameter and length of 12.39 m to accommodate large spacecraft[4]
CZ-2F/G Modified CZ-2F without escape tower, specially used for launching robotic missions such as Shenzhou cargo and space laboratory module with payload capacity up to 11.2 tons in LEO[5]
CZ-3B(A) More powerful Long March rockets using larger-size liquid propellant strap-on motors, with payload capacity up to 13 tons in LEO
CZ-3C Launch vehicle combining CZ-3B core with two boosters from CZ-2E
CZ-5B variant of the CZ-5 for low Earth orbit payloads (up to 25 tonnes to LEO)
CZ-6 or Small Launch Vehicle; small-lift kerolox LV with short launch preparation period, low cost and high reliability, to meet the launch need of small satellites up to 500 kg to 700 km SSO, first flight for 2010; with Fan Ruixiang (范瑞祥) as Chief designer of the project[6][7][8]
Tengyun another current project of two wing-staged reusable shuttle system
Reusable spaceplane reusable vertically-launched spaceplane with wings that lands on a runway and currently in service (speculated to be similar to the US X-37B in form and function)
Tianlong 2 medium-lift kerolox launch vehicle from private firm (in service)
Tianlong 3 medium to heavy-lift kerolox launch vehicle with reusable first stage from private firm currently under development
Zhuque-2 medium-lift liquid fuel (methalox) launch vehicle by private firm currently in service (first methane fueled rocket in the world to reach space and to reach orbit with payload)
Zhuque-3 medium to heavy-lift methalox launch vehicle by private firm with reusable first stage currently under development
Cancelled/retired
CZ-1D based on a CZ-1 but with a new N2O4/UDMH second stage.
Project 869 reusable shuttle system with Tianjiao-1 or Chang Cheng-1 (Great Wall-1) orbiters. Project of 1980s-1990s.
During the 1960s and 1970s, India initiated its own launch vehicle program in alignment with its geopolitical and economic considerations. In the 1960s–1970s, the country India started with a sounding rocket in the 1960s and 1970s and advanced its research to deliver the Satellite Launch Vehicle-3 and the more advanced Augmented Satellite Launch Vehicle (ASLV), complete with operational supporting infrastructure by the 1990s.[9]
Japan launched its first satellite, Ohsumi, in 1970, using ISAS' L-4S rocket. Prior to the merger, ISAS used small Mu rocket family of solid-fueled launch vehicles, while NASDA developed larger liquid-fueled launchers. In the beginning, NASDA used licensed American models.[10]
The first model of liquid-fueled launch vehicle developed domestically in Japan was the H-II, introduced in 1994. NASDA developed the H-II with two goals in mind: to be able to launch satellites using only its own technology, such as the ISAS, and to dramatically improve its launch capability over previous licensed models. To achieve these two goals, a staged combustion cycle was adopted for the first stage engine, the LE-7. The combination of the liquid hydrogen two-stage combustion cycle first stage engine and solid rocket boosters was carried over to its successor, the H-IIA and H-IIB and became the basic configuration of Japan's liquid fuel launch vehicles for 30 years, from 1994 to 2024.[10]
In 2003, JAXA was formed by merging Japan's three space agencies to streamline Japan's space program, and JAXA took over operations of the H-IIA liquid-fueled launch vehicle, the M-V solid-fuel launch vehicle, and several observation rockets from each agency. The H-IIA is a launch vehicle that improved reliability while reducing costs by making significant improvements to the H-II, and the M-V was the world's largest solid-fuel launch vehicle at the time.[10]
In November 2003, JAXA's first launch after its inauguration, H-IIA No. 6, failed, but all other H-IIA launches were successful, and as of February 2024, the H-IIA had successfully launched 47 of its 48 launches. JAXA plans to end H-IIA operations with H-IIA Flight No. 50 and retire it by March 2025.[11]
To be able to launch smaller mission on JAXA developed a new solid-fueled rocket, the Epsilon as a replacement to the retired M-V. The maiden flight successfully happened in 2013. So far, the rocket has flown six times with one launch failure.
In January 2017, JAXA attempted and failed to put a miniature satellite into orbit atop one of its SS520 series rockets.[13] A second attempt on 2 February 2018 was successful, putting a four kilogram CubeSat into Earth orbit. The rocket, known as the SS-520-5, is the world's smallest orbital launcher.[14]
In 2023, JAXA began operating the H3, which will replace the H-IIA and H-IIIB; the H3 is a liquid-fueled launch vehicle developed from a completely new design like the H-II, rather than an improved development like the H-IIA and H-IIB, which were based on the H-II. The design goal of the H3 is to increase launch capability at a lower cost than the H-IIA and H-IIB. To achieve this, an expander bleed cycle was used for the first time in the world for the first stage of the engine.[15][16][17]
Roscosmos uses a family of several launch rockets, the most famous of them being the R-7, commonly known as the Soyuz rocket that is capable of launching about 7.5 tons into low Earth orbit (LEO). The Proton rocket (or UR-500K) has a lift capacity of over 20 tons to LEO. Smaller rockets include Rokot and other Stations.
Currently rocket development encompasses both a new rocket system, Angara, as well as enhancements of the Soyuz rocket, Soyuz-2 and Soyuz-2-3. Two modifications of the Soyuz, the Soyuz-2.1a and Soyuz-2.1b have already been successfully tested, enhancing the launch capacity to 8.5 tons to LEO.
Several governmental agencies of the United States purchase ELV launches. NASA is a major customer with the Commercial Resupply Services and Commercial Crew Development programs, also launching scientific spacecraft. The vast majority of launch vehicles for its missions, from the Redstone missile to the Delta, Atlas, Titan and Saturn rocket families, have been expendable. As its flagship crewed exploration replacement for the partially reusable Space Shuttle, NASA's newest ELV, the Space Launch System flew successfully in November 2022 after delays of more than six years. It is planned to serve in a major role on crewed exploration programs going forward.[18][19]
Iran has developed an expendable satellite launch vehicle named Safir SLV. Measuring 22 m in height with a core diameter of 1.25 m, with two liquid propellant stages, a single thrust chambered first stage and a two-thrust chambered, step-throttled second stage, the SLV has a lift off mass exceeding 26 tons. The first stage consists of a lengthened up-rated Shahab-3C. According to the technical documentation presented in the annual meeting of the United Nations Office for Outer Space Affairs, it is a two-stage rocket with all liquid propellant engines. The first stage is capable of carrying the payload to the maximum altitude of 68 kilometres.[22]
The Safir-1B is the second generation of Safir SLV and can carry a satellite weighing 60 kg into an elliptical orbit of 300 to 450 km. The thrust of the Safir-1B rocket engine has been increased from 32 to 37 tons.
In 2010, a more powerful rocket named Simorgh was built. Its mission is to carry heavier satellites into orbit.[23][24] The Simorgh rocket is 27 meters (89 feet) long, and has a mass of 77 tonnes (85 tons). Its first stage is powered by four main engines, each generating up to 29,000 kilograms (64,000 pounds) of thrust, plus a fifth which will be used for attitude control, which provides an additional 13,600 kilograms (30,000 pounds). At liftoff, these engines will generate a total of 130,000 kilograms (290,000 pounds) of thrust. Simorgh is capable of putting a 350-kilogram (770 lb) payload into a 500-kilometer (310-mile) low Earth orbit. In 2015, Israeli media reported the missile is capable of taking a crewed spacecraft or satellite into space.[25][26] The first flight of the Simorgh rocket occurred on 19 April 2016.[27]
On 2 February 2013, the head of the Iranian Space Agency, Hamid Fazeli mentioned that the new satellite launch vehicle, Qoqnoos will be used after the Simorgh SLV for heavier payloads.[28][29]
The Israel Space Agency is one of only seven countries that both build their own satellites and launch their own launchers.[dubious – discuss] The Shavit is a spacelaunch vehicle capable of sending payload into low Earth orbit.[30] The Shavit launcher has been used to send every Ofeq satellite to date.
The development of the Shavit began in 1983 and its operational capabilities were proven on three successful launches of the Ofek satellites on September 19, 1988; April 3, 1990; and April 5, 1995. The Shavit launchers allows low-cost and high-reliability launch of micro/mini satellites to a low Earth orbit. The Shavit launcher is developed by Malam factory, one of four factories in the IAI Electronics Group. The factory is very experienced in development, assembling, testing and operating system for use in space.
The Shavit is a triple-stage launchersolid propellantbooster based on the 2-stage Jericho-IIballistic missile. The first and second stage engines are manufactured by Ta'as, and use solid fuel.[31] The third stage engines are manufactured by Rafael Advanced Defense Systems. The next generation Shavit rockets, now called the Shavit-2 are being developed. The Shavit-2 is said to be made available for commercial launches in the near future.
This Template lists historical, current, and future space rockets that at least once attempted (but not necessarily succeeded in) an orbital launch or that are planned to attempt such a launch in the future
Symbol † indicates past or current rockets that attempted orbital launches but never succeeded (never did or has yet to perform a successful orbital launch)