The concept of the three great evolutionary faunas of marine animals from the Cambrian to the present (that is, the entire Phanerozoic) was introduced by Jack Sepkoski in 1981 using factor analysis of the fossil record.[1] An evolutionary fauna typically displays an increase in biodiversity following a logistic curve followed by extinctions (although the Modern Fauna has not yet exhibited the diminishing part of the curve).
In the mid-19th century, John Phillips suggested three great systems: Palaeozoic, Mesozoic and Cenozoic. Writing after Sepkoski, Brenchley and Harper suggested that there were two early evolutionary faunas before the three of Sepkoski: Ediacaran and Tomottian. They also point out similarities with four "evolutionary terrestrial plant floras": Early Vascular, Pteridophytes, Gymnospores, Angiospores; and three "evolutionary terrestrial tetrapod faunas": "Megadynasty I (Carboniferous-early Permian)" "primitive amphibians and reptiles, most notably ... Dimetrodon", "Megadynasty II (early Permian-mid-Triassic)" "mammal-like therapsids", and "Megadynasty III (late Triassic-Cretaceous)" "included the age of the dinosaurs".
Patrick J. Brenchley & David A. T. Harper (1998). "9. Evolutionary palaeoecology of the marine biosphere". Palaeoecology: Ecosystems, environments and evolution. London: Chapman & Hall. pp. 303–356. ISBN0-412-43450-4.
Arnold I. Miller (2002). "Diversity of Life Through Time". Encyclopedia of Life Sciences. John Wiley & Sons.
John Phillips (1841). Figures and descriptions of Palaeozoic fossils of Cornwall, Devon and West Somerset, Observed in the Course of the Ordnance Survey of that District. London: Longman.