Edge dominating set

Examples of edge dominating sets.

In graph theory, an edge dominating set for a graph G = (VE) is a subset D ⊆ E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines).

A minimum edge dominating set is a smallest edge dominating set. Figures (a) and (b) are examples of minimum edge dominating sets (it can be checked that there is no edge dominating set of size 2 for this graph).

Properties

An edge dominating set for G is a dominating set for its line graph L(G) and vice versa.

Any maximal matching is always an edge dominating set. Figures (b) and (d) are examples of maximal matchings.

Furthermore, the size of a minimum edge dominating set equals the size of a minimum maximal matching. A minimum maximal matching is a minimum edge dominating set; Figure (b) is an example of a minimum maximal matching. A minimum edge dominating set is not necessarily a minimum maximal matching, as illustrated in Figure (a); however, given a minimum edge dominating set D, it is easy to find a minimum maximal matching with |D| edges (see, e.g., Yannakakis & Gavril 1980).

Algorithms and computational complexity

Determining whether there is an edge dominating set of a given size for a given graph is an NP-complete problem (and therefore finding a minimum edge dominating set is an NP-hard problem). Yannakakis & Gavril (1980) show that the problem is NP-complete even in the case of a bipartite graph with maximum degree 3, and also in the case of a planar graph with maximum degree 3.

There is a simple polynomial-time approximation algorithm with approximation factor 2: find any maximal matching. A maximal matching is an edge dominating set; furthermore, a maximal matching M can be at worst 2 times as large as a smallest maximal matching, and a smallest maximal matching has the same size as the smallest edge dominating set.

Also the edge-weighted version of the problem can be approximated within factor 2, but the algorithm is considerably more complicated (Fujito & Nagamochi 2002; Parekh 2002).

Chlebík & Chlebíková (2006) show that finding a better than (7/6)-approximation is NP-hard. Schmied & Viehmann proved that the Problem is UGC-hard to approximate to within any constant better than 3/2.

References

  • Ausiello, Giorgio; Crescenzi, Pierluigi; Gambosi, Giorgio; Kann, Viggo; Marchetti-Spaccamela, Alberto; Protasi, Marco (2003), Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer.
Minimum edge dominating set (optimisation version) is the problem GT3 in Appendix B (page 370).
Minimum maximal matching (optimisation version) is the problem GT10 in Appendix B (page 374).
Edge dominating set (decision version) is discussed under the dominating set problem, which is the problem GT2 in Appendix A1.1.
Minimum maximal matching (decision version) is the problem GT10 in Appendix A1.1.
Minimum Edge Dominating Set,
Minimum Maximal Matching.

Read other articles:

Pacific School of ReligionPSR LogoNama sebelumnyaPacific Theological Seminary (sampai tahun 1916)MotoA Tradition of BoldnessJenisSwastaDidirikan1866 (1866)AfiliasiA Multi-Denominational Seminary of the United Church of Christ with historic ties to the United Methodist Church dan Christian Church (Disciples of Christ)[1]PresidenDavid Vásquez-Levy DekanBernard SchlagerStaf akademik31 [2]Jumlah mahasiswa210 [2]LokasiBerkeley, CA, AS37°52′36″N 122°15′48″W&#...

 

Landau Institute for Theoretical PhysicsEstablished1964HeadIgor Valentinovich KolokolovMembers62AddressAkademika Semenova av., 1A, 142432 Chernogolovka, Moscow region, RussiaLocationChernogolovka, RussiaWebsitehttp://www.itp.ac.ru/en/ The L. D. Landau Institute for Theoretical Physics (Russian: Институт теоретической физики имени Л. Д. Ландау (ИТФ)) of the Russian Academy of Sciences is a research institution, located in the small town of Chernogolov...

 

Pour les articles homonymes, voir Rui Costa, da Costa et Faria. Rui CostaRui Costa lors du Tour de Romandie 2013.InformationsNom de naissance Rui Alberto Faria da CostaNaissance 5 octobre 1986 (37 ans)Póvoa de VarzimNationalité portugaiseÉquipe actuelle EF Education-EasyPostSpécialités Grimpeur, rouleurDistinction Commandeur de l'ordre de l'Infant Dom HenriÉquipes amateurs 2005Santa Maria da Feira-E-Leclerc2006Santa Maria da Feira-E-Leclerc-Moreira CongeladosÉquipes professionnel...

拉尔·巴哈杜尔·夏斯特里第二任印度总理任期1964年6月9日—1966年1月11日总统薩瓦帕利·拉達克里希南前任古爾扎里拉爾·南達继任古爾扎里拉爾·南達印度外交部長任期1964年6月9日—1964年7月18日总理自己前任古爾扎里拉爾·南達继任斯瓦倫·辛格(英语:Swaran Singh)印度內政部長任期1961年4月4日—1963年8月29日总理賈瓦哈拉爾·尼赫魯前任戈文德·巴拉布·潘特(英语:Govind Balla...

 

Cet article donne la liste des héritiers du trône d'Angleterre depuis l'avènement d'Henri III en 1216 jusqu'à l'Acte d'Union de 1707. Contrairement à d'autres monarchies, les règles de succession n'ont pas inclus la loi salique, mais les droits des femmes n'ont cependant pas toujours été respectés. Les héritiers mâles ont porté les titres de prince de Galles et de duc de Cornouailles, créés respectivement en 1301 et 1337 sur décision des rois Édouard Ier et Édouard III en fav...

 

В Википедии есть статьи о других людях с такой фамилией, см. Донской; Донской, Марк. Марк Донской На Московском кинофестивале. 1963 Имя при рождении Марк Семёнович Донской Дата рождения 21 февраля (6 марта) 1901(1901-03-06) Место рождения Одесса, Херсонская губерния, Российская �...

ilustrasi Raiju dibuat oleh seniman Jepang Ban KōKē (1733-1806), digambarkan dalam Kanda-Jihitsu (閑田次筆) sebagai binatang yang jatuh ke bumi dalam sambaran petir. Raijū (雷獣) merupakan makhluk legendaris berwujud serigala atau anjing berwarna putih dan biru dalam cerita rakyat Jepang, dan terbentuk dari elemen petir. Makhluk ini merupakan pendamping Raijin, dewa petir Shinto. Deskripsi Menurut catatan sumber, Raijū memiliki bentuk tubuh lain yang menyerupai berbagai macam hewan,...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

豪栄道 豪太郎 場所入りする豪栄道基礎情報四股名 澤井 豪太郎→豪栄道 豪太郎本名 澤井 豪太郎愛称 ゴウタロウ、豪ちゃん、GAD[1][2]生年月日 (1986-04-06) 1986年4月6日(38歳)出身 大阪府寝屋川市身長 183cm体重 160kgBMI 47.26所属部屋 境川部屋得意技 右四つ・出し投げ・切り返し・外掛け・首投げ・右下手投げ成績現在の番付 引退最高位 東大関生涯戦歴 696勝493敗...

Belgian cyclist Achiel BruneelPersonal informationFull nameLudovicus Achilles BruneelBorn(1918-10-19)19 October 1918Herenthout, BelgiumDied5 June 2008(2008-06-05) (aged 89)Team informationDisciplineTrackRoleRiderProfessional teams1939Alcyon-Dunlop1940-1942Individual1943Europe-Dunlop1944-1946Individual1947Dayton1948-1955Individual Medal record Representing  Belgium Men's track cycling European Championships 1949 Brussels Madison 1950 Zürich Madison 1953 Zürich Madison 1954 Zü...

 

Casa MilàLa PedreraCasa MilàInformasi umumAlamat92, Passeig de GràciaKotaBarcelona, CatalunyaNegaraSpanyol Casa Milà atau dikenal sebagai La Pedrera adalah sebuah bangunan modernis di Barcelona, Catalonia, Spanyol. Itu adalah kediaman pribadi terakhir yang dirancang oleh arsitek Antoni Gaudi dan dibangun antara tahun 1906 dan 1912. Bangunan ini ditugaskan pada tahun 1906 oleh Pere Milà dan istrinya Roser Segimon. Pada saat itu kontroversial karena fasad batu bergelombang, memutar balkon ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) أوسكار سيرانو معلومات شخصية الميلاد 25 مايو 1978 (46 سنة)[1]  برشلونة  مواطنة إسبانيا  الحياة العملية المهنة لاعب كرة مضرب  اللغات القطلونية  الري...

林競忠个人资料出生1914年7月8日(民國三年七月初八日)逝世1977年10月31日死因肝癌配偶陳碧珍儿女林一雄、林一鶚、林一元、林一夔、林一民、林一椽父母父茂公,母黃氏 林競忠(1914年7月8日—1977年10月31日)。福建省南安縣洪瀨鎮人。民國37年(1948年)在農會南區當選第一屆立法委員 生平[1] 八歲就讀於洪瀨公立小學,每試輒列前茅,後轉入私立蓬深小學,卒業後�...

 

Cet article est une ébauche concernant la Région de Bruxelles-Capitale et la route. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Placette du Peuplier La placette du Peuplier en novembre 2011 Situation Coordonnées 50° 51′ 58″ nord, 4° 23′ 22″ est Pays Belgique Région Région de Bruxelles-Capitale Ville Schaerbeek, Bruxelles Quartier(s) des Fleurs Début Avenue des Gl...

 

Konklaf Maret 1431Lambang Kekosongan Takhta SuciTanggal dan lokasi2–3 Maret 1431Santa Maria sopra Minerva, Negara GerejaPejabat pentingKetuaGiordano OrsiniProto-imamAntonio PancieraProto-diakonAlfonso Carillo de AlbornozPemilihanBakal calon1Paus terpilihGabriele Condulmer(Nama pilihan: Eugenius IV)← 14171447 → Konklaf 1431 (2–3 Maret 1431) diadakan setelah kematian Paus Martinus V, yang berakhir dengan terpilihnya kardinal Gabriele Condulmer, yang mengambil nama Eugenius IV,...

For the earlier campaign, see Siege of San Sebastián (1719). 1813 siege during the Peninsular War Siege of San SebastiánPart of Peninsular WarThe Storming of San Sebastian by Denis DightonDate7 July – 8 September 1813LocationSan Sebastián, Spain43°19′08″N 1°58′52″W / 43.319°N 1.981°W / 43.319; -1.981Result French victory (1st siege, July),Anglo-Portuguese victory (2nd siege, August-September) Burning of the cityBelligerents  United Kingdom K...

 

Church in Zürich, Switzerland The Grossmünster The Grossmünster (German pronunciation: [ɡʁoːsˈmʏnstɐ]; great minster) is a Romanesque-style Protestant church in Zürich, Switzerland. It is one of the four major churches in the city (the others being the Fraumünster, Predigerkirche, and St. Peterskirche). Its congregation forms part of the Evangelical Reformed Church of the Canton of Zürich. The core of the present building near the banks of the Limmat was constructed on the...

 

Dutch-Indian accessibility technology company This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (April 2021) (Learn how and when to remove this message) Oswald LabsOswald Labs' logo since December 2017FormerlyOswald Foundation (2016–2017)Company typePrivateIndustrySoftwareFounded15 August 2016; 8 yea...

Questa voce sull'argomento tiratori svedesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Mauritz ErikssonNazionalità Svezia Tiro a segno Palmarès Competizione Ori Argenti Bronzi Olimpiadi 1 1 3 Vedi maggiori dettagli  Modifica dati su Wikidata · Manuale Mauritz Eriksson (Stoccolma, 18 dicembre 1888 – Stoccolma, 14 febbraio 1947) è stato un tiratore a segno svedese. Palmarès Olimpiadi 5 medaglie: 1 oro (Stoccolma 1912 nella car...

 

Brand of optical lenses This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article reads like a directory. Wikipedia policy generally considers directories in articles to be unencyclopedic and potential spam. Please improve this article to conform to a higher standard of quality, and to make it neutral in tone. If it cannot be properly modified, the article is likely to be merged, redirected, or...