Double diffusive convection

Numerical simulations results show concentration fields at different Rayleigh numbers for fixed value of Rρ = 6.[1] The parameters are: (a) RaT = 7×108 , t=1.12×10−2, (b) RaT =3.5×108, t=1.12×10−2, (c) RaT =7×106, t=1.31×10−2, (d) RaT=7×105, t=3.69×10−2. It is seen from the figure that finger characteristics such as width, evolution pattern are a function of Rayleigh numbers.

Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion.[2]

Convection in fluids is driven by density variations within them under the influence of gravity. These density variations may be caused by gradients in the composition of the fluid, or by differences in temperature (through thermal expansion). Thermal and compositional gradients can often diffuse with time, reducing their ability to drive the convection, and requiring that gradients in other regions of the flow exist in order for convection to continue. A common example of double diffusive convection is in oceanography, where heat and salt concentrations exist with different gradients and diffuse at differing rates. An effect that affects both of these variables is the input of cold freshwater from an iceberg. Another example of double diffusion is the formation of false bottoms at the interface of sea ice and under-ice meltwater layers.[3] A good discussion of many of these processes is in Stewart Turner's monograph "Buoyancy effects in fluids".[4]

Double diffusive convection is important in understanding the evolution of a number of systems that have multiple causes for density variations. These include convection in the Earth's oceans (as mentioned above), in magma chambers,[5] and in the sun (where heat and helium diffuse at differing rates). Sediment can also be thought as having a slow Brownian diffusion rate compared to salt or heat, so double diffusive convection is thought to be important below sediment laden rivers in lakes and the ocean.[6][7]

Two quite different types of fluid motion exist—and therefore are classified accordingly—depending on whether the stable stratification is provided by the density-affecting component with the lowest or the highest molecular diffusivity. If the stratification is provided by the component with the lower molecular diffusivity (for example in case of a stable salt-stratified ocean perturbed by a thermal gradient due to an iceberg—a density ratio between 0 and 1), the stratification is called to be of "diffusive" type (see external link below), otherwise it is of "finger" type, occurring frequently in oceanographic studies as salt-fingers.[8] These long fingers of rising and sinking water occur when hot saline water lies over cold fresh water of a higher density. A perturbation to the surface of hot salty water results in an element of hot salty water surrounded by cold fresh water. This element loses its heat more rapidly than its salinity because the diffusion of heat is faster than of salt; this is analogous to the way in which just unstirred coffee goes cold before the sugar has diffused to the top. Because the water becomes cooler but remains salty, it becomes denser than the fluid layer beneath it. This makes the perturbation grow and causes the downward extension of a salt finger. As this finger grows, additional thermal diffusion accelerates this effect.

Role of salt fingers in oceans

Double diffusion convection plays a significant role in upwelling of nutrients and vertical transport of heat and salt in oceans. Salt fingering contributes to vertical mixing in the oceans. Such mixing helps regulate the gradual overturning circulation of the ocean, which control the climate of the earth. Apart from playing an important role in controlling the climate, fingers are responsible for upwelling of nutrients which supports flora and fauna. The most significant aspect of finger convection is that they transport the fluxes of heat and salt vertically, which has been studied extensively during the last five decades.[9]

Governing equations

The conservation equations for vertical momentum, heat and salinity equations (under Boussinesq's approximation) have the following form for double diffusive salt fingers:[10]

Where, U and W are velocity components in horizontal (x axis) and vertical (z axis) direction; k is the unit vector in the Z-direction, kT is molecular diffusivity of heat, kS is molecular diffusivity of salt, α is coefficient of thermal expansion at constant pressure and salinity and β is the haline contraction coefficient at constant pressure and temperature. The above set of conservation equations governing the two-dimensional finger-convection system is non-dimensionalised using the following scaling: the depth of the total layer height H is chosen as the characteristic length, velocity (U, W), salinity (S), temperature (T) and time (t) are non-dimensionalised as[11] Where, (TT, ST) and (TB, SB) are the temperature and concentration of the top and bottom layers respectively. On introducing the above non-dimensional variables, the above governing equations reduce to the following form:

Where, Rρ is the density stability ratio, RaT is the thermal Rayleigh number, Pr is the Prandtl number, Le is the Lewis number which are defined as

Figure 1(a-d) shows the evolution of salt fingers in heat-salt system for different Rayleigh numbers at a fixed Rρ. It can be noticed that thin and thick fingers form at different RaT. Fingers flux ratio, growth rate, kinetic energy, evolution pattern, finger width etc. are found to be the function of Rayleigh numbers and Rρ.Where, flux ratio is another important non-dimensional parameter. It is the ratio of heat and salinity fluxes, defined as,

Applications

Double diffusive convection holds importance in natural processes and engineering applications.[12][13] The effect of double diffusive convection is not limited to oceanography, also occurring in geology,[14] astrophysics,[15] and metallurgy.[16]

See also

References

  1. ^ Singh, O.P; Srinivasan, J. (2014). "Effect of Rayleigh numbers on the evolution of double-diffusive salt fingers". Physics of Fluids. 26 (62104): 062104. Bibcode:2014PhFl...26f2104S. doi:10.1063/1.4882264.
  2. ^ Mojtabi, A.; Charrier-Mojtabi, M.-C. (2000). "13. Double-Diffusive Convection in Porous Media". In Kambiz Vafai (ed.). Handbook of porous media. New York: Dekker. ISBN 978-0-8247-8886-5.
  3. ^ Notz, D.; McPhee, M.G.; Worster, M.G.; Maykut, G.A.; Schlünzen, K.H.; Eicken, H. (2018). "Impact of underwater-ice evolution on Arctic summer sea ice". Journal of Geophysical Research: Oceans. 108 (C7). doi:10.1029/2001JC001173.
  4. ^ Turner, J. S.; Turner, John Stewart (1979-12-20). Buoyancy Effects in Fluids. Cambridge University Press. ISBN 978-0-521-29726-4.
  5. ^ Huppert, H E; Sparks, R S J (1984). "Double-Diffusive Convection Due to Crystallization in Magmas". Annual Review of Earth and Planetary Sciences. 12 (1): 11–37. Bibcode:1984AREPS..12...11H. doi:10.1146/annurev.ea.12.050184.000303.
  6. ^ Parsons, Jeffrey D.; Bush, John W. M.; Syvitski, James P. M. (2001-04-06). "Hyperpycnal plume formation from riverine outflows with small sediment concentrations". Sedimentology. 48 (2): 465–478. Bibcode:2001Sedim..48..465P. doi:10.1046/j.1365-3091.2001.00384.x. ISSN 0037-0746. S2CID 128481974.
  7. ^ Davarpanah Jazi, Shahrzad; Wells, Mathew G. (2016-10-28). "Enhanced sedimentation beneath particle-laden flows in lakes and the ocean due to double-diffusive convection". Geophysical Research Letters. 43 (20): 10, 883–10, 890. Bibcode:2016GeoRL..4310883D. doi:10.1002/2016gl069547. hdl:1807/81129. ISSN 0094-8276. S2CID 55359245.
  8. ^ Stern, Melvin E. (1969). "Collective instability of salt fingers". Journal of Fluid Mechanics. 35 (2): 209–218. Bibcode:1969JFM....35..209S. doi:10.1017/S0022112069001066. S2CID 121945515.
  9. ^ Oschilies, A.; Dietze, H.; Kahlerr, P. (2003). "Salt-finger driven enhancement of upper ocean nutrient supply" (PDF). Geophys. Res. Lett. 30 (23): 2204–08. Bibcode:2003GeoRL..30.2204O. doi:10.1029/2003GL018552. S2CID 129229846.
  10. ^ Schmitt, R.W. (1979). "The growth rate of supercritical salt fingers". Deep-Sea Research. 26A (1): 23–40. Bibcode:1979DSRA...26...23S. doi:10.1016/0198-0149(79)90083-9.
  11. ^ Sreenivas, K.R.; Singh, O.P.; Srinivasan, J. (2009v). "On the relationship between finger width, velocity, and fluxes in thermohaline convection". Physics of Fluids. 21 (26601): 026601–026601–15. Bibcode:2009PhFl...21b6601S. doi:10.1063/1.3070527.
  12. ^ Turner, J S (January 1974). "Double-Diffusive Phenomena". Annual Review of Fluid Mechanics. 6 (1): 37–54. Bibcode:1974AnRFM...6...37T. doi:10.1146/annurev.fl.06.010174.000345. ISSN 0066-4189.
  13. ^ Turner, J S (January 1985). "Multicomponent Convection". Annual Review of Fluid Mechanics. 17 (1): 11–44. Bibcode:1985AnRFM..17...11T. doi:10.1146/annurev.fl.17.010185.000303. ISSN 0066-4189.
  14. ^ Singh, O.P; Ranjan, D.; Srinivasan, J. (September 2011). "A Study of Basalt Fingers Using Experiments and Numerical Simulations in Double-diffusive Systems". Journal of Geography and Geology. 3 (1). doi:10.5539/jgg.v3n1p42.
  15. ^ Garaud, P. (2018). "Double-Diffusive Convection at Low Prandtl Number". Annual Review of Fluid Mechanics. 50 (1): 275–298. Bibcode:2018AnRFM..50..275G. doi:10.1146/annurev-fluid-122316-045234.
  16. ^ Schmitt, R.W. (1983). "The characteristics of salt fingers in a variety of fluid systems, including stellar interiors, liquid metals, oceans and [magmas". Physics of Fluids. 26 (9): 2373–2377. Bibcode:1983PhFl...26.2373S. doi:10.1063/1.864419.

Read other articles:

Baruch de Spinoza di 1665 Baruch de Spinoza (24 November 1632 – 21 Februari 1677) (Bahasa Ibrani: ברוך שפינוזה) adalah filsuf keturunan Yahudi-Portugis berbahasa Spanyol yang lahir dan besar di Belanda.[1] Pikiran Spinoza berakar dalam tradisi Yudaisme.[1] Pemikiran Spinoza yang terkenal adalah ajaran mengenai Substansi tunggal alam.[1] Hal ini ia katakan karena baginya Tuhan dan alam semesta adalah satu dan Tuhan juga mempunyai bentuk yaitu seluruh alam.&...

 

 

Singhapala (Aksara Baybayin: ᜐᜒᜅ᜔ᜑᜉᜎ, Cebuano: Dakbayan sa Singapalacode: ceb is deprecated , bahasa Tagalog: Lungsod ng Singapala, bahasa Melayu Kuno: Kota Singapura) adalah kota berbenteng kuno, yang merupakan ibu kota dari Kerajaan Cebu. Letak kota kuno ini adalah yang sekarang menjadi Barangay Mabolo modern di distrik utara Kota Cebu. Kota ini didirikan oleh Sri Lumay bergelar Raja Muda Lumaya, seorang pangeran campuran Tamil-Melayu dari Sumatra.[1][2] La...

 

 

Gareth BaleMBE Gareth Bale bersama Wales pada Piala Dunia FIFA 2022Informasi pribadiNama lengkap Gareth Bale[1][2]Tanggal lahir 16 Juli 1989 (umur 34)[1]Tempat lahir Cardiff, WalesTinggi 186 cm (6 ft 1 in)[1]Posisi bermain Gelandang sayapKarier junior Cardiff Civil Service1999–2006 SouthamptonKarier senior*Tahun Tim Tampil (Gol)2006–2007 Southampton 40 (5)2007–2013 Tottenham Hotspur 146 (42)2013–2022 Real Madrid 176 (81)2020–2021 ...

SelebGenre Drama Komedi SkenarioFirman TriyadiCeritaH. Imam TantowiSutradaraUmam A. P.Pemeran Megan Domani Rizky Nazar Cassandra Lee Marcella Simon Dianda Sabrina Penggubah lagu temaSetia BandLagu pembukaIstana Bintang oleh Setia BandLagu penutupIstana Bintang oleh Setia BandPenata musikPurwacarakaNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode46ProduksiProduserLeo SutantoSinematografiMerdi EfendiPenyunting Reyni Gunanza Yorry Mustadi Pengaturan kameraMulti-kam...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Cedric Diggory – berita · surat kabar · buku · cendekiawan · JSTOR Cedric DiggoryPemeranRobert PattinsonInformasiJenis kelaminLaki-laki Cedric Diggory(1977 – 24 Juni 1995), adalah karakter fiksi dalam ...

 

 

Village in Maharashtra, India This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2018) Village in Maharashtra, IndiaHulgewadivillageCountry IndiaStateMaharashtraDistrictSolapur districtLanguages • OfficialMarathiTime zoneUTC+5:30 (IST) Hulgewadi is a village in the Karmala taluka of Solapur district in Maharashtra state, India. Demographics Covering 1,018 hect...

Joaquín DelgadoBiographieNaissance 4 mars 1934CardonaDécès 17 août 1963 (à 29 ans)MadridNationalité espagnoleActivités Ébéniste, dessinateurAutres informationsMembre de Fédération ibérique des jeunesses libertairesConfédération nationale du travailMouvements Anarcho-syndicalisme, anarchisme, illégalismemodifier - modifier le code - modifier Wikidata Protestation à Paris en 1963 contre les assassinats de Julián Grimau, Manuel Moreno Barranco, Francisco Granado et Joaquín...

 

 

Ouges Un des trois lavoirs d'Ouges. Blason Administration Pays France Région Bourgogne-Franche-Comté Département Côte-d'Or Arrondissement Dijon Intercommunalité Dijon Métropole Maire Mandat Jean-Claude Girard 2020-2026 Code postal 21600 Code commune 21473 Démographie Populationmunicipale 1 604 hab. (2021 ) Densité 133 hab./km2 Géographie Coordonnées 47° 15′ 44″ nord, 5° 04′ 34″ est Altitude Min. 211 mMax. 239 m Superf...

 

 

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

Mosque in Qom, Iran Jamkaran Mosqueمسجد جمکرانReligionAffiliationShia IslamDistrictQom CountyProvinceQomEcclesiastical or organizational statusMosqueLeadershipAli Akbar OjaghnezhadLocationLocationJamkaran, IranShown within IranGeographic coordinates34°34′59.5″N 50°54′50″E / 34.583194°N 50.91389°E / 34.583194; 50.91389ArchitectureStyleIslamic, Safavid architectureSpecificationsDome(s)5Minaret(s)2Websitewww.jamkaran.ir The Jamkaran Mosque (Persian: ...

 

 

محرك إشعال بالشمعة (بالإنجليزية: Spark-ignition engine)‏ هو مصطلح يشير إلي محركات الاحتراق الداخلي حيث تحدث عملية احتراق خليط الهواء والوقود بدايًة عن طريق شرارة يتم إطلاقها من شمعة احتراق ليبدأ الاحتراق هذه الطريقة هي على النقيض من الطريقة المستخدمة في محركات الإشعال بالانضغاط (م...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) نقش تل القاضيمعلومات عامةتاريخ الاكتشاف 1993تعديل - تعديل مصدري - تعديل ويكي بيانات النقش معروض في متحف إسر...

Israeli–Cypriot and former Ukrainian businessman and politician In this name that follows Eastern Slavic naming customs, the patronymic is Valeriyovych and the family name is Kolomoyskyi. Ihor KolomoyskyiІгор КоломойськийKolomoyskyi in 2013Born (1963-02-13) 13 February 1963 (age 61)Dnipropetrovsk, Ukrainian SSR, Soviet Union(now Dnipro, Ukraine)[1]NationalityIsraelCyprusOther namesIgor KolomoiskyAlma materDnipropetrovsk Metallurgical Academy[2&...

 

 

Camellia sinensis, the source of tea leaves and buds, can be grown in much of the United States. Commercial cultivation has been tried at various times and locations since the 1700s, but tea has remained a niche crop and has never been cultivated widely in the US. As of 2020, the US mainland has one relatively large plantation with full mechanization in Charleston, South Carolina, and many small commercial tea gardens that pick tea by hand. Some growers feel that tea production is not economi...

 

 

Michael E. DeBakeyMichael Ellis DeBakeyLahirMichel DeBakey(1908-09-07)7 September 1908Lake Charles, LouisianaMeninggal11 Juli 2008(2008-07-11) (umur 99)Houston, TexasAlmamaterUniversitas TulanePenghargaanMedali Emas Lomonosov (2003) Michael Ellis DeBakey (7 September 1908–11 Juli 2008) adalah seorang dokter bedah jantung, ilmuwan, dan pengajar kedokteran Lebanon-Amerika Serikat.[2] DeBakey merupakan kanselor emeritus Kolese Kedokteran Baylor di Houston, Texas, direktur The Met...

Election in Indiana Main article: 1936 United States presidential election 1936 United States presidential election in Indiana ← 1932 November 3, 1936[1] 1940 → All 14 Indiana votes to the Electoral College   Nominee Franklin D. Roosevelt Alf Landon Party Democratic Republican Home state New York Kansas Running mate John Nance Garner Frank Knox Electoral vote 14 0 Popular vote 934,974 691,570 Percentage 56.63% 41.89% County Results Roosev...

 

 

Disambiguazione – Deledda rimanda qui. Se stai cercando altri significati, vedi Deledda (disambigua). Grazia Deledda nel 1926 Premio Nobel per la letteratura 1926 Grazia Maria Cosima Damiana Deledda, nota semplicemente come Grazia Deledda o, in lingua sarda, Gràssia o Gràtzia Deledda[1][2][3] (Nuoro, 28 settembre 1871[4][5] – Roma, 15 agosto 1936), è stata una scrittrice italiana vincitrice del Premio Nobel per la letteratura 1926. �...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. الطاقة الشمسية في الصومال، في عام 2012، جري النظر فيها من أجل التنمية في المستقبل القريب. اثنان البنود التي يتم توفيرها في سبعة بلدان أفريقية أخرى في «ضوء السنوات المقبلة» البر...

الدوري التونسي لكرة اليد للرجال الموسم 1966-1967 البلد تونس  المنظم الجامعة التونسية لكرة اليد  النسخة 12 عدد الفرق 13   الفائز الترجي الرياضي التونسي النادي الإفريقي (الثاني) الدوري التونسي لكرة اليد 1965–66  الدوري التونسي لكرة اليد 1967–68  تعديل مصدري - تعديل   الدو...

 

 

Russian sabre fencer Nikolay KovalevNikolay Kovalev stands on podium after winning gold at 2014 Kazan World Championships.Personal informationFull nameNikolay Anatolyevich KovalevNickname(s)Kolya, Nick, and Coach KBorn (1986-10-26) 26 October 1986 (age 37)Vesyoly, Russian SFSR, Soviet UnionNationalityRussianHeight1.76 m (5 ft 9 in)Weight71 kg (157 lb)SportSportFencingWeaponSabreHandRight-handedNational coachChristian BauerClubSKA Saint-PetersburgHead...