In signal processing, direction of arrival (DOA) denotes the direction from which usually a propagatingwave arrives at a point, where usually a set of sensors are located. These set of sensors forms what is called a sensor array. Often there is the associated technique of beamforming which is estimating the signal from a given direction.[1][2] Various engineering problems addressed in the associated literature are:
Find the direction relative to the array where the sound source is located
Direction of different sound sources around you are also located by you using a process similar to those used by the algorithms in the literature
Radio telescopes use these techniques to look at a certain location in the sky
Advanced sophisticated techniques perform joint direction of arrival and time of arrival (ToA) estimation to allow a more accurate localization of a node. This also has the merit of localizing more targets with less antenna resources. Indeed, it is well-known in the array processing community that, generally speaking, one can resolve targets via antennas. When JADE [4][5] (joint angle and delay) estimation is employed, one can go beyond this limit.
^Zhang, Qilin; Abeida, Habti; Xue, Ming; Rowe, William; Li, Jian (2012). "Fast implementation of sparse iterative covariance-based estimation for source localization". The Journal of the Acoustical Society of America. 131 (2): 1249–1259. Bibcode:2012ASAJ..131.1249Z. doi:10.1121/1.3672656. PMID22352499.
^ Vanderveen, Michaela C., Constantinos B. Papadias, and Arogyaswami Paulraj. "Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array." IEEE Communications letters 1.1 (1997): 12-14.
^ Ahmad Bazzi and Dirk Slock. "Joint Angle and Delay Estimation (JADE) by Partial Relaxation." 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2019.
^ Barabell, Arthur. "Improving the resolution performance of eigenstructure-based direction-finding algorithms." ICASSP'83. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 8. IEEE, 1983.