Dikson's hull is 88.5 metres (290.4 ft) long overall and has a beam of 21.2 metres (69.6 ft) at its widest point.[3] However, the towing notch increases the extreme length of the vessel to 92.0 metres (301.8 ft) while the inclined sides reduce the hull width to 20.0 metres (65.6 ft) at the design waterline.[6] When loaded to the maximum draught of 6.8 metres (22.3 ft), the icebreaker has a displacement of 6,583 tonnes (6,479 long tons).[3] The vessel's ice class, LL4, is intended for icebreaking operations primarily in ports and coastal areas.[7] The maximum thickness of the shell plating in the bow region is 35 millimetres (1.4 in).[6]
Unlike most icebreakers, Dikson has a diesel-mechanical propulsion system where the vessel's four 2,390-kilowatt (3,210 hp) 8-cylinderWärtsilä 8R32 medium-speed main engines are coupled in pairs through Lohmann & Stolterfoht Navilus twin-input/single-output single-stage reduction gearboxes to propeller shafts driving 4-metre (13 ft) four-bladed stainless steel KaMeWa controllable pitch propellers.[8] In order to protect the main engines from large torque variations during icebreaking operations and to prevent the propellers from stopping when the blades come in contact with ice, each shaft has a 11.5-tonne (11.3-long-ton; 12.7-short-ton) flywheel to increase rotational inertia of the drivetrain.[9][10][11] The vessel's icebreaking capability is further increased by a Wärtsilä Air Bubbling System (WABS) lubricating the hull as well as an active heeling system.[6] Onboard electrical power is generated by three Wärtsilä-Vasa 624TS auxiliary diesel engines with 960 kVA alternators.[8]
Dikson's bollard pull is 914 kilonewtons (93 tf) when operating with a continuous propulsion power of 7,000 kilowatts (9,400 hp).[11] However, for short-term operation the icebreaker can use its maximum shaft output of 9,100 kilowatts (12,200 hp) to generate a bollard pull of 1,400 kilonewtons (140 tf).[6][8] The vessel has a service speed of 16.5 knots (30.6 km/h; 19.0 mph) in open water[3] and maintain a continuous speed of 2 knots (3.7 km/h; 2.3 mph) when breaking 1 metre (3.3 ft) thick level ice.[12]
History
Development and construction
In 1977, Wärtsilä began developing a new icebreaker concept in close co-operation with experts from the Soviet Union. Although the Finnish shipbuilder had delivered more icebreaking vessels than any other shipyard in the world, they had all been diesel-electric vessels where diesel generators powered electric propulsion motors driving fixed-pitch propellers. In the new icebreakers, this fairly expensive specialized drivetrain would be replaced with cheaper and more efficient mechanical transmission where the main diesel engines would be connected to controllable pitch propellers through a reduction gearbox. An extensive research program was initiated by Wärtsilä Arctic Design and Marketing (WADAM) to ensure that the new concept was viable and that the problems encountered the recently commissioned United States Coast GuardPolar-class icebreakers would be avoided.[9][13]
In April 1980, Wärtsilä and the Soviet Union signed a FIM 400 million shipbuilding contract for the construction of three icebreakers to escort ships in the freezing subarctic ports. The vessels, first of which would be delivered in late 1982 and the two following ones in 1983, would be stationed in the Barents Sea, Sea of Okhotsk and Baltic Sea.[4]
Dikson was one of the numerous icebreakers involved in the shipping crisis in the Soviet Eastern Arctic where unprecedented ice conditions caused a major disturbance to shipping at the end of the 1983 navigating season.[15]
In 2012, Dikson was used to conduct seismic mapping in the Barents Sea. For this purpose, the icebreaker was fitted with a streamer and associated equipment in Norway.[16][17]
In 2022, Dikson joined the Arktika, Polar King, Inzhenier Trubin, Sevmorput, and Kapitan Dranitsyn to deliver a copper mining project's construction materials in the town of Pevek. Arktika escorted the rest of the ships in the fleet into the Barents Sea in late February.[20]
^"Uusi murtajatyyppi", Navigator, no. 9, Oy Laivastolehti, p. 16, 1980, ISSN0355-7871
^ ab"Satamakäyttöön", Navigator, no. 5, Oy Laivastolehti, p. 10, 1913, ISSN0355-7871
^Barr, W.; Wilson, E. (March 1985), "The Shipping Crisis in the Soviet Eastern Arctic at the Close of the 1983 Navigation Season", Arctic, 38 (1): 1–17, CiteSeerX10.1.1.554.8653, doi:10.14430/arctic2101