Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) or diffusion quantum Monte Carlo[1] is a quantum Monte Carlo method that uses a Green's function to calculate low-lying energies of a quantum many-body Hamiltonian.

Introduction and motivation of the algorithm

Diffusion Monte Carlo has the potential to be numerically exact, meaning that it can find the exact ground state energy for any quantum system within a given error, but approximations must often be made and their impact must be assessed in particular cases. When actually attempting the calculation, one finds that for bosons, the algorithm scales as a polynomial with the system size, but for fermions, DMC scales exponentially with the system size. This makes exact large-scale DMC simulations for fermions impossible; however, DMC employing a clever approximation known as the fixed-node approximation can still yield very accurate results.[2]

To motivate the algorithm, let's look at the Schrödinger equation for a particle in some potential in one dimension:

We can condense the notation a bit by writing it in terms of an operator equation, with

where is the Hamiltonian operator. So then we have

where we have to keep in mind that is an operator, not a simple number or function. There are special functions, called eigenfunctions, for which , where is a number. These functions are special because no matter where we evaluate the action of the operator on the wave function, we always get the same number . These functions are called stationary states, because the time derivative at any point is always the same, so the amplitude of the wave function never changes in time. Since the overall phase of a wave function is not measurable, the system does not change in time.

We are usually interested in the wave function with the lowest energy eigenvalue, the ground state. We're going to write a slightly different version of the Schrödinger equation that will have the same energy eigenvalue, but, instead of being oscillatory, it will be convergent. Here it is:

.

We've removed the imaginary number from the time derivative and added in a constant offset of , which is the ground state energy. We don't actually know the ground state energy, but there will be a way to determine it self-consistently which we'll introduce later. Our modified equation (some people call it the imaginary-time Schrödinger equation) has some nice properties. The first thing to notice is that if we happen to guess the ground state wave function, then and the time derivative is zero. Now suppose that we start with another wave function(), which is not the ground state but is not orthogonal to it. Then we can write it as a linear sum of eigenfunctions:

Since this is a linear differential equation, we can look at the action of each part separately. We already determined that is stationary. Suppose we take . Since is the lowest-energy eigenfunction, the associate eigenvalue of satisfies the property . Thus the time derivative of is negative, and will eventually go to zero, leaving us with only the ground state. This observation also gives us a way to determine . We watch the amplitude of the wave function as we propagate through time. If it increases, then decrease the estimation of the offset energy. If the amplitude decreases, then increase the estimate of the offset energy.

Stochastic implementation and the Green's function

Now we have an equation that, as we propagate it forward in time and adjust appropriately, we find the ground state of any given Hamiltonian. This is still a harder problem than classical mechanics, though, because instead of propagating single positions of particles, we must propagate entire functions. In classical mechanics, we could simulate the motion of the particles by setting , if we assume that the force is constant over the time span of . For the imaginary time Schrödinger equation, instead, we propagate forward in time using a convolution integral with a special function called a Green's function. So we get . Similarly to classical mechanics, we can only propagate for small slices of time; otherwise the Green's function is inaccurate. As the number of particles increases, the dimensionality of the integral increases as well, since we have to integrate over all coordinates of all particles. We can do these integrals by Monte Carlo integration.

References

  1. ^ Reynolds, Peter J.; Tobochnik, Jan; Gould, Harvey (1990). "Diffusion Quantum Monte Carlo". Computers in Physics. 4 (6): 662–668. Bibcode:1990ComPh...4..662R. doi:10.1063/1.4822960.
  2. ^ Anderson, James B. (1976). "Quantum chemistry by random walk. H 2P, H+3 D3h 1Aʹ1, H2 3Σ+u, H4 1Σ+g, Be 1S". The Journal of Chemical Physics. 65 (10): 4121. Bibcode:1976JChPh..65.4121A. doi:10.1063/1.432868.

Read other articles:

Chibi beralih ke halaman ini. Untuk grup vokal Indonesia, lihat Cherrybelle. Versi Chibi dari Wikipe-tan. Chibi (ちびcode: ja is deprecated , juga bisa ditulis 禿び[1]) adalah kata Bahasa Jepang yang berarti orang pendek atau anak kecil. Kata ini populer di kalangan penggemar manga dan anime. Arti kata ini adalah seseorang atau binatang yang pendek/kecil. Contoh dari penggunaan kata ini yang populer adalah Chibiusa, salah satu nama karakter dari Sailor Moon dikenal dengan Usagi Ke...

 

 

Andy WilliamsWilliams pada tahun 1967Informasi latar belakangNama lahirHoward Andrew WilliamsNama lainVoice of National TreasureEmperor of EasyThe King of HeartsEmperor of ClassMr. Moon RiverThe King of Easy ListeningMr. ChristmasThe Golden VoiceThe American IdolSatin-Smooth VoiceLahir(1927-12-03)3 Desember 1927 Wall Lake, Iowa, Amerika SerikatMeninggal 25 September 2012(2012-09-25) (umur 84) Branson, Missouri, Amerika SerikatGenrePop tradisional, easy listeningPekerjaanPenyanyi, aktor, ...

 

 

Pour les articles homonymes, voir Union libérale. Union libérale républicaine Présentation Président Henri Barboux Fondation mars 1889 Scission de Centre gauche Disparition 1er novembre 1903 Fusionné dans Fédération républicaine Siège 15, rue de la Ville-l'Évêque, Paris, France Positionnement Centre droit Idéologie Libéral-conservatismeLibéralisme économiqueConservatismeRépublicanisme modifier  Henri Barboux, président de l'Union libérale républicaine de 1889 à 1903...

Romanian actress and poet Crăciunescu in 2008 Ioana Crăciunescu (born 1950) is a Romanian actress and poet. Biography Ioana, also named Luminita, Crăciunescu, was born in Bucharest, the daughter of a civil engineer. She studied at the Caragiale Academy of Theatrical Arts and Cinematography in her native city and in 1973 became a member of the Nottara Theatre Company. She has published six volumes of collected poetry beginning with Duminica absentă (Sunday absent) in 1980 for which she won...

 

 

British politician (born 1970) The Right HonourableBen WallaceMPOfficial portrait, 2022Secretary of State for DefenceIn office24 July 2019 – 31 August 2023Prime Minister Boris Johnson Liz Truss Rishi Sunak Preceded byPenny MordauntSucceeded byGrant ShappsMinister of State for Security and Economic CrimeIn office17 July 2016 – 24 July 2019Prime MinisterTheresa MayPreceded byJohn HayesSucceeded byBrandon LewisParliamentary Under-Secretary of State for Northern IrelandIn of...

 

 

For the type of vehicle, see luxury car. 2006 filmLuxury CarFrench one-sheetDirected byWang ChaoWritten byWang ChaoProduced bySylvain BursztejnMao YonghongZhou WeisiStarringTian YuanWu YoucaiLi YiqingHuang HeCinematographyLiu YonghongEdited byTao WenMusic byXiao HeDistributed byFrance:Celluloid DreamsRelease datesCannes:May 22, 2006Running time88 minutesCountryChina/FranceLanguageMandarin Luxury Car (Chinese: 江城夏日; pinyin: Jiāng chéng xià rì; lit. 'River City Summer Da...

Defunct digital media company This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: TouchVision – news · newspapers · books · scholar · JSTOR (October 2013) (Learn how and when to remove this message) TouchVisionType Defunct Digital broadcast television network Defunct online Video on Demand (news) CountryUnited S...

 

 

Questa voce sull'argomento politici statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Thomas Carney 2º Governatore del KansasDurata mandato12 gennaio 1863 –9 gennaio 1865 PredecessoreCharles L. Robinson SuccessoreSamuel J. Crawford Dati generaliPartito politicoRepubblicano Thomas Carney (Contea di Delaware, 20 agosto 1824 – Leavenworth, 28 luglio 1888) è stato un pol...

 

 

Pour les articles homonymes, voir Saint Paterne et Racan. Saint-Paterne-Racan Héraldique Administration Pays France Région Centre-Val de Loire Département Indre-et-Loire Arrondissement Chinon Intercommunalité Communauté de communes de Gâtine-Racan Maire Mandat Eric Lapleau 2020-2026 Code postal 37370 Code commune 37231 Démographie Gentilé Saint-Paternois Populationmunicipale 1 680 hab. (2021 ) Densité 35 hab./km2 Géographie Coordonnées 47° 36′ 10″...

1st-century BC Roman noblewoman and mother of Brutus For other people with the same name, see Servilia. ServiliaBornc. 100 BC[1]DiedAfter 42 BC, probably around 27-23 BC.[2]Known forMother of Marcus Junius BrutusJulius Caesar's mistressSpouse(s)Marcus Junius BrutusDecimus Junius SilanusChildrenBrutusMarcus Junius SilanusJunia PrimaJunia SecundaJunia TertiaParent(s)Quintus Servilius Caepio and Livia Servilia (c. 100 BC – after 42 BC)[2] was a Roman matron from a ...

 

 

Bourg-Saint-Maurice Vue de Bourg-Saint-Maurice depuis Les Arcs. Blason Logo Administration Pays France Région Auvergne-Rhône-Alpes Département Savoie Arrondissement Albertville Intercommunalité Communauté de communes de Haute-Tarentaise Maire Mandat Guillaume Desrues 2020-2026 Code postal 73700 Code commune 73054 Démographie Gentilé Borains Populationmunicipale 7 187 hab. (2021 ) Densité 40 hab./km2 Population agglomération 9 527 hab. Géographie Coordonnée...

 

 

2007 studio album by Norah Jones Not Too LateStudio album by Norah JonesReleasedJanuary 30, 2007RecordedSummer 2005–Fall 2006StudioThe Coop, Brooklyn Recording, New York CityLength45:22LabelBlue NoteProducerLee AlexanderNorah Jones chronology The Chill Album(2005) Not Too Late(2007) Live from Austin, Texas(2008) Norah Jones studio album chronology Feels Like Home(2004) Not Too Late(2007) The Fall(2009) Alternative coverDeluxe edition cover Singles from Not Too Late Thinking About YouRel...

الشحاذمعلومات عامةالعنوان الشحاذ (بالعربية) شكل من الأعمال الإبداعية رواية النوع الفني رواية قصيرة المُؤَلِّف نجيب محفوظ الناشر رندم هاوس بلد المنشأ مصر لغة العمل أو لغة الاسم العربية تاريخ النشر 1965 تعديل - تعديل مصدري - تعديل ويكي بيانات الشحاذ هي رواية للأديب العالمي نج�...

 

 

Political corruption Forms and concepts Bribery Cronyism Economics of corruption Electoral fraud Elite capture Influence peddling Kleptocracy Mafia state Nepotism Pyrrhic defeat theory Slush fund Simony State capture State-corporate crime Throffer Anti-corruption International Anti-Corruption Court Group of States Against Corruption International Anti-Corruption Academy International Anti-Corruption Day United Nations Convention against Corruption Corruption by country Africa Angola Botswana...

 

 

Voce principale: Idrettslaget Runar. Questa voce sull'argomento società calcistiche norvegesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Runar FotballCalcio Segni distintiviUniformi di gara Casa Trasferta Colori socialiBianco, nero Dati societariCittàSandefjord Nazione Norvegia ConfederazioneUEFA Federazione NFF Campionato3. divisjon Fondazione1949 StadioHaukerød Idrettspark(? posti) Sito webilrunar.no PalmarèsSi invita a seguire il mode...

Native American group in California, United States For the indigenous people in Bolivia, see Yuqui people. Ethnic group Yuki peopleYuki men at the Nome Cult Farm, ca. 1858Total population569 alone and in combination[1] (2010)Regions with significant populations United States ( California)LanguagesEnglish, formerly YukiRelated ethnic groupsWappo people The Yuki (also known as Yukiah) are an indigenous people of California who were traditionally divided into three groups: Ukom...

 

 

Ethnic group in Canada Ethnic group Tamil Canadiansகனேடிய தமிழர்Total population237,890[1][nb 1]0.7% of the total Canadian population (2021)Regions with significant populationsGreater Toronto, Greater Montreal, Greater Vancouver, Calgary Region, Edmonton Region, National Capital RegionLanguagesTamil, Canadian English, Canadian FrenchReligionPredominantly:Hinduism (75.8%)Minorities:Christianity (17.4%)Irreligion (5.5%)Islam (1.0%)Buddhism (0.13%)Sikhism ...

 

 

Park in the Bronx, NYC Raoul Wallenberg ForestLocationBronx, New YorkCoordinates40°53′15″N 73°55′04″W / 40.88750°N 73.91778°W / 40.88750; -73.91778Elevation138 ftEtymologynamed after Raoul WallenbergStatusOpen Raoul Wallenberg Forest is a New York City park[1] located in Riverdale, New York named after Raoul Wallenberg, a Swedish diplomat who saved thousands of Hungarian Jewish people.[2] References ^ Raoul Wallenberg Forest : NYC Parks...

بوب هويختون   معلومات شخصية الميلاد 30 أكتوبر 1947 (العمر 76 سنة)إنجلترا  مركز اللعب لاعب وسط  الجنسية المملكة المتحدة  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1966–1969 فولهام 0 (0) 1969–1970 برايتون أند هوف ألبيون 0 (0) 1970–1971 هاستينغز يونايتد  [لغات أخرى]‏ 65 (14) 1971–1972 ماد�...

 

 

Election for the governorship of the U.S. state of Minnesota 1871 Minnesota gubernatorial election ← 1869 November 7, 1871 1873 →   Nominee Horace Austin Winthrop Young Party Republican Democratic Popular vote 46,950 30,376 Percentage 60.06% 38.86% Governor before election Horace Austin Republican Elected Governor Horace Austin Republican Elections in Minnesota General elections 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 Federal elections Presidential el...