In 1954 he completed his mathematical studies at the Jagiellonian University, in Kraków obtained his doctorate at the Institute of Mathematical Sciences in 1958, habilitation in 1962, the title of associate professor in 1966, and the title of professor in 1973.
1990–2002: president of the Scientific Council, Institute of Mathematics of the Polish Academy of Sciences.
Czeslaw Olech, often as a visiting professor, was invited by the world's leading mathematical centers in the United States, USSR (later Russia), Canada and many European countries. He cooperated with Solomon Lefschetz, Sergey Nikolsky, Philip Hartman and Roberto Conti, the most distinguished mathematicians involved in the theory of differential equations. Based on joint work with Hartman, he proved the Olech theorem. Lefschetz highly valued Ważewski's school, and especially the retract method, which Olech applied by developing, among other things, control theory. He supervised nine doctoral dissertations, and reviewed a number of theses and dissertations.[1]
exact estimates of exponential growth of solution of second-order linear differential equations with bounded coefficients;
theorems concerning global asymptotic stability of the autonomous system on the plane with stable Jacobian matrix at each point of the plane, results establishing relation between question of global asymptotic stability of an autonomous system and that of global one-to-oneness of a differentiable map;
contribution to the question whether unicity condition implies convergence of successive approximation to solutions of ordinary differential equations.
establishing a most general version of the so-called bang-bang principle for linear control problem by detailed study of the integral of set valued map;
existence theorems for optimal control problem with unbounded controls and multidimensional cost functions;
Meisters, Gary H.; Olech, Czesław (1993). "Power-exact, nilpotent, homogeneous matrices". Linear and Multilinear Algebra. 35 (3–4): 225–236. doi:10.1080/03081089308818260. S2CID121224054.
Meisters, Gary H.; Olech, Czeslaw (1991). "Strong nilpotence holds in dimensions up to five only∗". Linear and Multilinear Algebra. 30 (4): 231–255. doi:10.1080/03081089108818109.
Olech, Czesraw (1990). "The Lyapunov Theorem: Its extensions and applications". Methods of Nonconvex Analysis. Lecture Notes in Mathematics. Vol. 1446. pp. 84–103. doi:10.1007/BFb0084932. ISBN978-3-540-53120-3.
Olech, Czesław (1984). "Decomposability as a substitute for convexity". Multifunctions and Integrands. Lecture Notes in Mathematics. Vol. 1091. pp. 193–205. doi:10.1007/BFb0098812. ISBN978-3-540-13882-2.
Olech, C. (1976). "Weak lower semicontinuity of integral functionals". Journal of Optimization Theory and Applications. 19: 3–16. doi:10.1007/BF00934048. S2CID121143492.
Olech, Czeslaw (1975). "Existence Theory in Optimal Control Problems - the Underlying Ideas". International Conference on Differential Equations. pp. 612–635. doi:10.1016/B978-0-12-059650-8.50050-8. ISBN9780120596508.
Olech, Czeslaw (1974). "The Characterization of the Weak Closure of Certain Sets of Integrable Functions". SIAM Journal on Control. 12 (2): 311–318. doi:10.1137/0312024.
Szegö, G. P.; Olech, C.; Cellina, A. (1968). "On the stability properties of a third order system". Annali di Matematica Pura ed Applicata. 78: 91–103. doi:10.1007/BF02415111. S2CID119973869.
Meisters, G. H.; Olech, C. (1963). "Schlicht functions". Duke Mathematical Journal. 30: 63–80. doi:10.1215/S0012-7094-63-03008-4.
Hartman, Philip; Olech, Czeslaw (1962). "On Global Asymptotic Stability of Solutions of Differential Equations". Transactions of the American Mathematical Society. 104 (1): 154–178. doi:10.2307/1993939. JSTOR1993939.
Olech, Czeslaw (1957). "Sur un problème de M. G. Sansone lié à la théorie du synchrotrone". Annali di Matematica Pura ed Applicata. 44: 317–329. doi:10.1007/BF02415206. S2CID170536734.
Olech, C. (1957). "Sur certaines propriétés des intégrales de l'équation y'=f(x,y) dont le second membre est doublement périodique". Annales Polonici Mathematici. 3 (2): 189–199. doi:10.4064/ap-3-2-189-199.