Czesław Lejewski

Czesław Lejewski (1913 in Minsk – 2001 in Doncaster) was a Polish philosopher and logician, and a member of the Lwow-Warsaw School of Logic. He studied under Jan Łukasiewicz and Karl Popper in the London School of Economics, and W. V. O. Quine.[1][2][3]

"Logic and Existence"

In his paper "Logic and Existence" (1954–55) Lejewski presented a version of free logic. He began by presenting the problem of non-referring nouns, and commended Quine for resisting the temptation to solve the problem by saying that non-referring names are meaningless. Quine's solution, however, was that we[who?] must first decide whether our name refers before we know how to treat it logically. Lejewski found this unsatisfactory because there should be a formal distinction between referring and non-referring names. He went on to write, "This state of affairs does not seem to be very satisfactory. The idea that some of our rules of inference should depend on empirical information, which may not be forthcoming, is so foreign to the character of logical inquiry that a thorough re-examination of the two inferences (existential generalization and universal instantiation) may prove worth our while." (parenthesis not Lejewski's).

He then elaborates a very creative formal language: Take a domain consisting of a and b, and two signs 'a' and 'b' which refer to these elements. There is one predicate, Fx. There is no need for universal or existential quantification, in the style of Quine in his Methods of Logic. The only possible atomic statements are Fa and Fb. We now introduce new signs but no new elements in the domain. 'c' refers to neither element and 'd' refers to either. Thus, is true. We now introduce the predicate Dx which is true for d. We have no reason, here, to contend that , and thus to claim that there is something which does not exist. We simply do not have good reason to make existential claims about the referent of every sign, since that would assume that every sign refers. Instead, we should remain agnostic until we have better information. By the stipulations given here, however, we have downright good reason to be atheists about c, and have good reason to still claim to boot.

Lejewski calls this account the unrestricted interpretation. The restricted interpretation is then the language which does not distinguish between signs and elements, and so is forced to claim is true. It is obvious that everything expressible in the unrestricted interpretation is expressible in the restricted interpretation. A generalization to infinite domains and infinite signs is easy. A generalization to infinite predicates needs no explanation.

A convenient fact is that this logic can also accommodate the domain of the null set, as quantificational claims will not need to assume an element in the domain. For example, will be true on an empty domain using the unrestricted interpretation, where 'c' still does not refer. The proof is that, assuming the antecedent true, we must understand the quantifiers to make no claims about the elements of the domain but only about the signs. He thus suggests that we abandon the interpretation of existential quantification as "there exists an x" and replace it with "for some (sign) x" (parenthesis not Lejewski's). He also suggests that the inference corresponding to existential generalization be termed "particular generalization". Where it is correct to apply the predicate Fx to every sign in the domain, it is correct to apply the predicate to a given sign in the domain. Thus the conditional is true. (Hence the treatment above that distinguishes existential quantification and the meta-linguistic statement 'x exists'.) Using the restricted interpretation, we see that the claim becomes which is false. The main antecedent is vacuously true. This is because nothing exists and so, for every sign, the inner antecedent is false, and so vacuously true. The consequent is false, because where the antecedent is true the consequent tells us that something exists. In the null set, this is always false. Quine's response to the problem of the empty set had been that it was a problem never faced in reality, which Lejewski found unsatisfying.

Lejewski then goes on to extend this interpretation to the language of inclusion, and presents an axiomatization of an unrestricted logic.[4]

This logic was later developed more fully by Karel Lambert, who called the unrestricted interpretation "free logic". Instead of the meta-linguistic 'x exists', Lambert adopted the symbolization E!x, which can be axiomatized without existential quantification.[5]

Selected works

  • "Logic and Existence". British Journal for the Philosophy of Science 5 (1954-5), pp. 104–119.
  • "On Leśniewski's Ontology", Ratio 1 (1958), pp. 150–176.
  • "On Implicational Definitions", Studia Logica 8 (1958), pp. 189–205.
  • "A Re-Examination of the Russellian Theory of Descriptions", Philosophy 35 (1960), pp. 14–29.
  • "On Prosleptic Syllogisms", Notre Dame Journal of Formal Logic 2 (1961), pp. 158–176.
  • "Aristotle's syllogistic and its extensions",Synthese 15 (1963), pp. 125–154.
  • "Ancient Logic", section in Prior, A. N., "Logic, History of, " The Encyclopedia of Philosophy, 1967, vol. 4, pp. 513–520.
  • "Jan Łukasiewicz", section in The Encyclopedia of Philosophy, 1967, Vol. 5, pp. 104–107.
  • "On Prosleptic Premisses", Notre Dame Journal of Formal Logic 17 (1976), pp. 1–18.
  • "Accommodating the informal notion of class within the framework of Lesniewski's Ontology", Dialectica 39 (1985), pp, 217-241.
  • "Formalization of functionally complete propositional calculus with the functor of implication as the only primitive term", Studia Logica 48 (1989), pp. 479–494.

References

  1. ^ Czesław Lejewski, "Logic and Existence" British Journal for the Philosophy of Science; Vol. 5 (1954–5), pp. 104–119, footnote *
  2. ^ The Lvóv-Warsaw School, by Jan Woleński in the Stanford Encyclopedia of Philosophy
  3. ^ Piotr Lajeczko; Mariusz Grygianiec. "PHILOSOPHIA ANALYTICA IN POLONIA". Archived from the original on 2001-12-03. Retrieved 2008-10-11.
  4. ^ Czesław Lejewski, "Logic and Existence" British Journal for the Philosophy of Science Vol. 5 (1954–5), pp. 104–119
  5. ^ "Free Logic and the Concept of Existence" by Karel Lambert, Notre Dame Journal of Formal Logic, V.III, numbers 1 and 2, April 1967

Read other articles:

Laerru LaèrruKomuneComune di LaerruLokasi Laerru di Provinsi SassariNegara ItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaPietro MoroLuas • Total19,85 km2 (7,66 sq mi)Ketinggian165 m (541 ft)Populasi (2016) • Total906[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07030Kode area telepon079Situs webhttp://www.comunelaerru.ss.it Laerru (bahasa Sardinia: Laèrru) adalah ...

 

 

For the historical region, see Ingria. Free IngriaСвободная ИгнрияFlag of the Ingrian Finns used by the organizationFormation1998; 26 years ago (1998)PurposeSeparatism Federalism (before 2022) Confederalism (before 2022)LocationRussia, Leningrad Oblast, Saint-PetersburgCoordinatorsPavel Mezerin and Maxim KuzakhmetovAffiliationsFree Nations of Post-Russia ForumWebsiteOfficial TelegramFormerly calledIngria MovementFree Ingria (Russian: Свободная Инг�...

 

 

إسطنبول (محافظة) (بالتركية: İstanbul)‏     خريطة الموقع تقسيم إداري البلد تركيا  [1][2] العاصمة إسطنبول  التقسيم الأعلى تركيا (1921–)  خصائص جغرافية إحداثيات 41°00′44″N 28°58′34″E / 41.012195397077°N 28.976085471989°E / 41.012195397077; 28.976085471989   [3] المساحة 5343.02 كيلوم...

French former competitive figure skater Thierry CerezThierry Cerez in 2012Born (1976-06-11) 11 June 1976 (age 47)Évry, Essonne, FranceHeight1.77 m (5 ft 9+1⁄2 in)Figure skating careerCountryFranceCoachAndre BrunetSkating clubFranconville Sport ClubBegan skating1984Retired2002 Thierry Cerez (born 11 June 1976) is a French former competitive figure skater. He is the 1995 World Junior silver medalist and the 1998 French national champion. His highest placement at the E...

 

 

Untuk penerbit buku, lihat Miramax Books. Miramax, LLCJenisAnak perusahaanIndustriFilmTelevisiDidirikan1979; 45 tahun lalu (1979)PendiriBob WeinsteinHarvey WeinsteinKantorpusatLos Angeles, California, Amerika SerikatKaryawan100+IndukThe Walt Disney Company (1993–2010) Filmyard Holdings (2011–2016) beIN Media Group (2016–sekarang) Paramount Global (2020-sekarang)DivisiSaat ini:Miramax TelevisionDulu:Dimension FilmsMiramax Family FilmsPrestige FilmsMillemeter FilmsMiramax Home Entert...

 

 

Pour les articles homonymes, voir Violet (homonymie). École d'ingénieurs généralistes - La RochelleHistoireFondation 1901StatutType École privée d'ingénieursForme juridique Association déclarée (d)Directeur Frédéric ThivetDevise Ma vie d'ingénieur commence iciMembre de CGE, CDEFI, CTI, IngéFrance, Concours Avenir, UGEI, « Elles Bougent »Site web www.eigsi.frChiffres-clésÉtudiants 1 241 (2019)[1], dont:1137 sous statut étudiant104 sous statut apprentiLocalisat...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Museum Kerajaan Perak Istana Kenangan (Abjad jawi: ايستان كنڠن) adalah kediaman kerajaan di Kuala Kangsar di Perak, Malaysia. Sejarah Dibangun pada tahun 1926 untuk Sultan Iskandar Shah oleh tukang kayu Melayu Enci Sepian dari Bukit Mertajam,...

 

 

Koordinat: 7°48′26″S 110°24′09″E / 7.8071°S 110.4025°E / -7.8071; 110.4025 BanguntapanKalurahanKantor Kalurahan BanguntapanPeta lokasi Desa BanguntapanNegara IndonesiaProvinsiDaerah Istimewa YogyakartaKabupatenBantulKecamatanBanguntapanKode pos55798Kode Kemendagri34.02.12.2002 Luas8,33 km² Banguntapan adalah sebuah kalurahan yang terletak di kapanewon Banguntapan, Kabupaten Bantul, Daerah Istimewa Yogyakarta, Indonesia.[1][2] Kelurahan...

 

 

Флаг гордости бисексуалов Бисексуальность      Сексуальные ориентации Бисексуальность Пансексуальность Полисексуальность Моносексуальность Сексуальные идентичности Би-любопытство Гетерогибкость и гомогибкость Сексуальная текучесть Исследования Шк...

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

 

For the Gram Parsons-led band, see Live 1973. The Fallen Angels in 1968. The Fallen Angels were an American psychedelic rock band formed in Washington D.C., in 1966. Spearheaded by the group's lead vocalist and bassist, Jack Bryant, the band originally released two albums and several singles, which were marked by lyrical and instrumental experimentation. Despite never breaking through on a national scale, the Fallen Angels were popular in the American music underground, and their music has b...

 

 

German World War II submarine U-995, a U-boat similar to U-1022, at the Laboe Naval Memorial History Nazi Germany NameU-1022 Ordered13 June 1942[1] BuilderBlohm & Voss, Hamburg[1] Yard number222[1] Laid down6 May 1943[1] Launched13 April 1944[1] Commissioned7 June 1944[1] Fate Surrendered on 9 May 1945 Sunk on 29 December 1945 during Operation Deadlight[1] General characteristics Class and typeType VIIC/41 submarine Displacement 759 ...

East German politician (1909–1973) For the US artist, see Edith Baumann (artist). Edith BaumannEdith Honecker-BaumannBorn(1909-08-01)1 August 1909Prenzlauer Berg, Berlin, Kingdom of Prussia, German EmpireDied7 April 1973(1973-04-07) (aged 63)East Berlin, East GermanyOccupation(s)Political activistYouth leader (FDJ) Party Central Committee memberPolitical partySAPD (1931–1933)SED (1946–1973)Spouse Erich Honecker ​(m. 1947⁠–⁠1953)​Chil...

 

 

Sprague ElectricLogo used from 1962 to 1985Site of Sprague Electric headquarters in North Adams, Massachusetts; now owned by MASS MoCAFormerlySprague Specialties Company (1926 to 1942)Company typeSubsidiary of VishayIndustryElectronic componentsFounded1926; 98 years ago (1926)FoundersRobert C. SpragueFateacquired by General Cable in 1978, in turn acquired by Penn Central in 1982, sold off in early 1990sHeadquartersNorth Adams, MassachusettsProductsCapacitors Sprague Electric...

 

 

  لمعانٍ أخرى، طالع تمريض (توضيح). ممرض ممرض بَحْرية أمريكي يعتني بطفلة صغيرة الاسم الرسمي ممرض فرع من طب،  ورعاية  [لغات أخرى]‏  النوع ممارس صحي المجال الرعاية الصحية تعديل مصدري - تعديل   التمريض هي مهنة في قطاع الرعاية الصحية تركز على رعاية الأفراد والأ...

Electric power supply to trains by locomotives This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Head-end power – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this message) MBTA Commuter Rail car with U.S. standard head-end power electrical connection cables In rail t...

 

 

Underwater diving at altitudes above 300 m SCUBA Diver in the mountain lake Lai da Marmorera 1,680 metres (5,510 ft) above sea level) Altitude diving is underwater diving using scuba or surface supplied diving equipment where the surface is 300 metres (980 ft) or more above sea level (for example, a mountain lake).[1][2] Altitude is significant in diving because it affects the decompression requirement for a dive, so that the stop depths and decompression times used ...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Philip Smith. Questa voce sull'argomento cestisti statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Phil SmithPhil Smith nel 1975Nazionalità Stati Uniti Altezza193 cm Peso84 kg Pallacanestro RuoloGuardia Termine carriera1983 CarrieraGiovanili Washington High School1970-1974 S. Francisco Dons Squadre di club 1974-1980...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: BTR-50 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年12月) BTR-50 BTR-50PKイスラエル、ラトルン戦車博物館の展示車...

 

 

2024年 4月(卯月) 日 月 火 水 木 金 土 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 日付の一覧 各月 1 2 3 4 5 6 7 8 9 10 11 12 4月5日(しがついつか)は、グレゴリオ暦で年始から95日目(閏年では96日目)にあたり、年末まであと270日ある。 できごと ヤコブ・ロッゲフェーンがイースター島を発見(1722) セイロン沖海戦、日本海軍が英国東洋艦隊に勝利(1942)。...