Cycle (graph theory)

A graph with edges colored to illustrate a closed walk, H–A–B–A–H, in green; a circuit which is a closed walk in which all edges are distinct, B–D–E–F–D–C–B, in blue; and a cycle which is a closed walk in which all vertices are distinct, H–D–G–H, in red.

In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal.

A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed acyclic graph. A connected graph without cycles is called a tree.

Definitions

Circuit and cycle

  • A circuit is a non-empty trail in which the first and last vertices are equal (closed trail).[1]
Let G = (V, E, Φ) be a graph. A circuit is a non-empty trail (e1, e2, ..., en) with a vertex sequence (v1, v2, ..., vn, v1).
  • A cycle or simple circuit is a circuit in which only the first and last vertices are equal.[1]
  • n is called the length of the circuit resp. length of the cycle.

Directed circuit and directed cycle

  • A directed circuit is a non-empty directed trail in which the first and last vertices are equal (closed directed trail).[1]
Let G = (V, E, Φ) be a directed graph. A directed circuit is a non-empty directed trail (e1, e2, ..., en) with a vertex sequence (v1, v2, ..., vn, v1).
  • A directed cycle or simple directed circuit is a directed circuit in which only the first and last vertices are equal.[1]
  • n is called the length of the directed circuit resp. length of the directed cycle.

Chordless cycle

In this graph the green cycle A–B–C–D–E–F–A is chordless whereas the red cycle G–H–I–J–K–L–G is not. This is because the edge {K, I} is a chord.

A chordless cycle in a graph, also called a hole or an induced cycle, is a cycle such that no two vertices of the cycle are connected by an edge that does not itself belong to the cycle. An antihole is the complement of a graph hole. Chordless cycles may be used to characterize perfect graphs: by the strong perfect graph theorem, a graph is perfect if and only if none of its holes or antiholes have an odd number of vertices that is greater than three. A chordal graph, a special type of perfect graph, has no holes of any size greater than three.

The girth of a graph is the length of its shortest cycle; this cycle is necessarily chordless. Cages are defined as the smallest regular graphs with given combinations of degree and girth.

A peripheral cycle is a cycle in a graph with the property that every two edges not on the cycle can be connected by a path whose interior vertices avoid the cycle. In a graph that is not formed by adding one edge to a cycle, a peripheral cycle must be an induced cycle.

Cycle space

The term cycle may also refer to an element of the cycle space of a graph. There are many cycle spaces, one for each coefficient field or ring. The most common is the binary cycle space (usually called simply the cycle space), which consists of the edge sets that have even degree at every vertex; it forms a vector space over the two-element field. By Veblen's theorem, every element of the cycle space may be formed as an edge-disjoint union of simple cycles. A cycle basis of the graph is a set of simple cycles that forms a basis of the cycle space.[2]

Using ideas from algebraic topology, the binary cycle space generalizes to vector spaces or modules over other rings such as the integers, rational or real numbers, etc.[3]

Cycle detection

The existence of a cycle in directed and undirected graphs can be determined by whether a depth-first search (DFS) finds an edge that points to an ancestor of the current vertex (i.e., it contains a back edge).[4] All the back edges which DFS skips over are part of cycles.[5] In an undirected graph, the edge to the parent of a node should not be counted as a back edge, but finding any other already visited vertex will indicate a back edge. In the case of undirected graphs, only O(n) time is required to find a cycle in an n-vertex graph, since at most n − 1 edges can be tree edges.

Many topological sorting algorithms will detect cycles too, since those are obstacles for topological order to exist. Also, if a directed graph has been divided into strongly connected components, cycles only exist within the components and not between them, since cycles are strongly connected.[5]

For directed graphs, distributed message-based algorithms can be used. These algorithms rely on the idea that a message sent by a vertex in a cycle will come back to itself. Distributed cycle detection algorithms are useful for processing large-scale graphs using a distributed graph processing system on a computer cluster (or supercomputer).

Applications of cycle detection include the use of wait-for graphs to detect deadlocks in concurrent systems.[6]

Algorithm

The aforementioned use of depth-first search to find a cycle can be described as follows:

For every vertex v: visited(v) = finished(v) = false
For every vertex v: DFS(v)

where

DFS(v) =
  if finished(v): return
  if visited(v):
    "Cycle found"
    return
  visited(v) = true
  for every neighbour w: DFS(w)
  finished(v) = true

For undirected graphs, "neighbour" means all vertices connected to v, except for the one that recursively called DFS(v). This omission prevents the algorithm from finding a trivial cycle of the form vwv; these exist in every undirected graph with at least one edge.

A variant using breadth-first search instead will find a cycle of the smallest possible length.

Covering graphs by cycle

In his 1736 paper on the Seven Bridges of Königsberg, widely considered to be the birth of graph theory, Leonhard Euler proved that, for a finite undirected graph to have a closed walk that visits each edge exactly once (making it a closed trail), it is necessary and sufficient that it be connected except for isolated vertices (that is, all edges are contained in one component) and have even degree at each vertex. The corresponding characterization for the existence of a closed walk visiting each edge exactly once in a directed graph is that the graph be strongly connected and have equal numbers of incoming and outgoing edges at each vertex. In either case, the resulting closed trail is known as an Eulerian trail. If a finite undirected graph has even degree at each of its vertices, regardless of whether it is connected, then it is possible to find a set of simple cycles that together cover each edge exactly once: this is Veblen's theorem.[7] When a connected graph does not meet the conditions of Euler's theorem, a closed walk of minimum length covering each edge at least once can nevertheless be found in polynomial time by solving the route inspection problem.

The problem of finding a single simple cycle that covers each vertex exactly once, rather than covering the edges, is much harder. Such a cycle is known as a Hamiltonian cycle, and determining whether it exists is NP-complete.[8] Much research has been published concerning classes of graphs that can be guaranteed to contain Hamiltonian cycles; one example is Ore's theorem that a Hamiltonian cycle can always be found in a graph for which every non-adjacent pair of vertices have degrees summing to at least the total number of vertices in the graph.[9]

The cycle double cover conjecture states that, for every bridgeless graph, there exists a multiset of simple cycles that covers each edge of the graph exactly twice. Proving that this is true (or finding a counterexample) remains an open problem.[10]

Graph classes defined by cycle

Several important classes of graphs can be defined by or characterized by their cycles. These include:

See also

References

  1. ^ a b c d Bender & Williamson 2010, p. 164.
  2. ^ Gross, Jonathan L.; Yellen, Jay (2005), "4.6 Graphs and Vector Spaces", Graph Theory and Its Applications (2nd ed.), CRC Press, pp. 197–207, ISBN 9781584885054, archived from the original on 2023-02-04, retrieved 2016-09-27.
  3. ^ Diestel, Reinhard (2012), "1.9 Some linear algebra", Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer, pp. 23–28, archived from the original on 2023-02-04, retrieved 2016-09-27.
  4. ^ Tucker, Alan (2006). "Chapter 2: Covering Circuits and Graph Colorings". Applied Combinatorics (5th ed.). Hoboken: John Wiley & sons. p. 49. ISBN 978-0-471-73507-6.
  5. ^ a b Sedgewick, Robert (1983), "Graph algorithms", Algorithms, Addison–Wesley, ISBN 0-201-06672-6
  6. ^ Silberschatz, Abraham; Peter Galvin; Greg Gagne (2003). Operating System Concepts. John Wiley & Sons, INC. pp. 260. ISBN 0-471-25060-0.
  7. ^ Veblen, Oswald (1912), "An Application of Modular Equations in Analysis Situs", Annals of Mathematics, Second Series, 14 (1): 86–94, doi:10.2307/1967604, JSTOR 1967604.
  8. ^ Richard M. Karp (1972), "Reducibility Among Combinatorial Problems" (PDF), in R. E. Miller and J. W. Thatcher (ed.), Complexity of Computer Computations, New York: Plenum, pp. 85–103, archived (PDF) from the original on 2021-02-10, retrieved 2014-03-12.
  9. ^ Ore, Ø. (1960), "Note on Hamilton circuits", American Mathematical Monthly, 67 (1): 55, doi:10.2307/2308928, JSTOR 2308928.
  10. ^ Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, vol. 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1, ISBN 978-0-444-87803-8.

Read other articles:

Louis XVIRaja Prancis dan NavarraBerkuasa10 Mei 1774 – 21 September 1792Penobatan11 Juni 1775Katedral ReimsPendahuluLouis XVPenerusMonarki Dihapuskan Jérôme Pétion de Villeneuve (Sebagai presiden konvensi nasional), Louis XVII (Klaim)Raja Prancis (Klaim)Berkuasa21 September 1972 - 21 Januari 1793PenerusLouis XVIIInformasi pribadiKelahiranLouis Auguste de France, Duc du Berry23 Agustus 1754Chatêau de VersaillesKerajaan PrancisKematian21 Januari 1793Place de la RévolutionPemakamanBasilik...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. Jam bahagia atau masa ria (Bahasa Inggris : Happy hour) adalah istilah pemasaran untuk saat tempat seperti rumah makan atau bar menawarkan potongan harga minuman beralkohol . Item menu rabat seperti makanan pembuka sering disajikan selama masa ria b...

 

Отец теории графов Леонард Эйлер Тео́рия гра́фов — раздел дискретной математики, изучающий графы, одна из ветвей топологии. В самом общем смысле граф — это множество точек (вершин, узлов), которые соединяются множеством линий (рёбер, дуг)[1]. Теория графов (то есть с�...

Multi-purpose arena in the Bronx, New York This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Draddy Gymnasium – news · newspapers · books · scholar · JSTOR (March 2018) Draddy GymnasiumLocationBronx, New YorkCoordinates40°53′27″N 73°54′01″W / 40.89073°N 73.900158°W...

 

Sylvain Distin Distin bermain untuk Manchester CityInformasi pribadiNama lengkap Sylvain Distin[1]Tanggal lahir 16 Desember 1977 (umur 46)[1]Tempat lahir Bagnolet, PrancisTinggi 1,93 m (6 ft 4 in) [2]Posisi bermain BekKarier senior*Tahun Tim Tampil (Gol)1997–1998 Joué-lès-Tours 32 (4)1998–1999 Tours 26 (3)1999–2000 Gueugnon 32 (1)2000–2002 Paris Saint-Germain 28 (0)2001–2002 → Newcastle United (pinjaman) 28 (0)2002–2007 Manchester C...

 

Waktu di Rusia   KALT Waktu Kaliningrad UTC+2 (MSK−1)   MSK Waktu Moskwa UTC+3 (MSK±0)   SAMT Waktu Samara UTC+4 (MSK+1)   YEKT Waktu Yekaterinburg UTC+5 (MSK+2)   OMST Waktu Omsk UTC+6 (MSK+3)   KRAT Waktu Krasnoyarsk UTC+7 (MSK+4)   IRKT Waktu Irkutsk UTC+8 (MSK+5)   YAKT Waktu Yakutsk UTC+9 (MSK+6)   VLAT Waktu Vladivostok UTC+10 (MSK+7)   MAGT Waktu Magadan UTC+11 (MSK+8)   PETT Waktu Kamchatka UTC+12 (MSK+9) Waktu Moskow (ba...

Disambiguazione – Se stai cercando il politico e senatore, sindaco di Lucca, vedi Ferdinando Martini (1889-1953). Ferdinando Martini Governatore dell'EritreaDurata mandato16 dicembre 1897 - 25 marzo 1907 PredecessoreAntonio Baldissera SuccessoreGiuseppe Salvago Raggi Ministro delle colonie del Regno d'ItaliaDurata mandato21 marzo 1914 - 18 giugno 1916 Capo del governoAntonio Salandra PredecessorePietro Bertolini SuccessoreGaspare Colosimo Ministro della pubblica istruzione del Re...

 

Pickled mustard plant stem from Chongqing, China This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Zha cai – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this template message) Zha caiWhole heads of zha cai coated in chili pasteChinese榨菜Hanyu Pinyinzhà cài Transc...

 

Republic XP-72DescrizioneTipocaccia intercettore Equipaggio1 Costruttore Republic Data primo volo2 febbraio 1944 Utilizzatore principale USAAF Esemplari2 Sviluppato dalP-47 Thunderbolt Dimensioni e pesiLunghezza11,15 m (36 ft 7 in) Apertura alare12,47 m (40 ft 11 in) Altezza4,88 m (16 ft 00 in) Superficie alare27,87 m² (300 ft²) Carico alare235 kg/m² (48,1 lb/ft²) Peso a vuoto5 205 kg (11 476 lb) Peso carico6 547 kg (14 433 lb) Peso max al decollo7 933 kg (17 ...

Railway station in Lhasa, Tibet, China 29°38′38″N 90°58′00″E / 29.64389°N 90.96667°E / 29.64389; 90.96667 Lhasa West railway station (simplified Chinese: 拉萨西站; traditional Chinese: 拉薩西站; pinyin: lā sà xī zhàn) is a railway station in Lhasa, Tibet Autonomous Region, People's Republic of China. Schedules This station is a cargo station, no passenger trains stop at here as of July 2006. See also List of stations on Qingzang rail...

 

Đạo giáo Học thuyết Đạo Đức Vô cực Thái cực Âm dương Vô vi Tất nhiên Bất tử Ngũ hành Khí Thiên Địa Thực hành Bùa lục Chiêm bốc Chú ngữ Đạo dẫn Hành khí Lôi pháp Luyện thần Ngoại đan Nội đan Phục thực Thực liệu Tịch cốc Văn bản Kinh Dịch Âm Phù kinh Bão Phác Tử Đạo đức kinh Độ Nhân kinh Hoàng Đế nội kinh Nam Hoa kinh Liệt tử Linh Bảo kinh Sơn Hải kinh Thái Bình kinh Thượng...

 

Pour les articles homonymes, voir Levien. Sonya LevienBiographieNaissance 25 décembre 1888Panemunė (d)Décès 19 mars 1960 (à 71 ans)Los AngelesNationalité américaineActivités Scénariste, écrivaine, journaliste, réalisatrice, juristePériode d'activité 1919-1960Autres informationsDistinction Oscar du meilleur scénario original (1954)modifier - modifier le code - modifier Wikidata Sonya Levien est une scénariste américaine d'origine russe, née Sara Opesken à Panemunėlis �...

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

معركة البريقة الثالثة جزء من حرب ثورة 17 فبراير خريطة الثورة الليبية معلومات عامة التاريخ 31 مارس - 7 أبريل 2011 البلد ليبيا  الموقع بلدة البريقة30°24′32″N 19°34′24″E / 30.408888888889°N 19.573333333333°E / 30.408888888889; 19.573333333333   النتيجة انتصار القذافي وسيطرته على البلدة المتحاربون ...

 

Relationship between the Catholic Church and HIV/AIDS Main article: Catholic Church and health care The Catholic Church is a major provider of medical care to HIV/AIDS patients. Much of its work takes place in developing countries, although it has also had a presence in the global north. Its opposition to condoms, despite their effectiveness in preventing the spread of HIV, has invited criticism from public health officials and anti-AIDS activists. Catholic views on condoms Main article: Cath...

Katak kaca zamrud Espadarana prosoblepon Status konservasiRisiko rendahIUCN54934 TaksonomiKerajaanAnimaliaFilumChordataKelasAmphibiaOrdoAnuraFamiliCentrolenidaeGenusEspadaranaSpesiesEspadarana prosoblepon (Boettger, 1892) Tata namaSinonim taksonHyla prosoblepon Boettger, 1892 Centrolene prosoblepon (Boettger, 1892) Hyla parabambae Boulenger, 1898 Hylella puncticrus Boulenger, 1896 Hyla ocellifera Boulenger, 1899 Cochranella ocellifera (Boulenger, 1899)[1]ProtonimHyla prosoblepon lbs E...

 

2021 film by Steven Spielberg West Side StoryTheatrical release posterDirected bySteven SpielbergScreenplay byTony KushnerBased onWest Side Storyby Jerome Robbins Leonard Bernstein Stephen Sondheim Arthur LaurentsProduced by Steven Spielberg Kristie Macosko Krieger Kevin McCollum Starring Ansel Elgort Ariana DeBose David Alvarez Mike Faist Rita Moreno Rachel Zegler CinematographyJanusz KamińskiEdited by Michael Kahn Sarah Broshar Music byLeonard BernsteinProductioncompanies Amblin Entertainm...

 

Human settlement in EnglandUpton-upon-SevernUpton-upon-SevernLocation within WorcestershirePopulation2,881 (2011)OS grid referenceSO852405• London114 miles (183 km)Civil parishUpton-upon-SevernDistrictMalvern HillsShire countyWorcestershireRegionWest MidlandsCountryEnglandSovereign stateUnited KingdomPost townWorcesterPostcode districtWR8Dialling code01684PoliceWest MerciaFireHereford and WorcesterAmbulanceWest Midlands UK ParliamentWest Wo...

Gesellschaft Deutscher ChemikerFormation1949 (1949) (1867)TypeLearned societyHeadquartersFrankfurtLocationGermanyMembership 30,000Official language GermanPresidentProf. Dr. Peter R. SchreinerWebsitewww.gdch.de The German Chemical Society (German: Gesellschaft Deutscher Chemiker, GDCh) is a learned society and professional association founded in 1949 to represent the interests of German chemists in local, national and international contexts. GDCh brings together people working in chemistr...

 

Untuk pepet dalam aksara Jawa dan Bali, lihat Pepet (Hanacaraka). PepetəNomor IPA322Lihat juga vokal tengah madyaPengodean karakterEntitas (desimal)əUnikode (heks)U+0259 Gambar Sampel suaranoicon sumber · bantuan Pepet (dibaca /ˈpəpət/, bahasa Inggris: schwa) adalah sebuah istilah yang menandakan suara vokal tengah madya (baik bulat atau takbulat) pada diagram vokal IPA, yang memiliki lambang /ə/. Bunyinya adalah seperti 'e' pada kata besar, keras, dan tetap. Dalam...