Curve orientation

In mathematics, an orientation of a curve is the choice of one of the two possible directions for travelling on the curve. For example, for Cartesian coordinates, the x-axis is traditionally oriented toward the right, and the y-axis is upward oriented.

In the case of a plane simple closed curve (that is, a curve in the plane whose starting point is also the end point and which has no other self-intersections), the curve is said to be positively oriented or counterclockwise oriented, if one always has the curve interior to the left (and consequently, the curve exterior to the right), when traveling on it. Otherwise, that is if left and right are exchanged, the curve is negatively oriented or clockwise oriented. This definition relies on the fact that every simple closed curve admits a well-defined interior, which follows from the Jordan curve theorem.

The inner loop of a beltway road in a country where people drive on the right side of the road is an example of a negatively oriented (clockwise) curve. In trigonometry, the unit circle is traditionally oriented counterclockwise.

The concept of orientation of a curve is just a particular case of the notion of orientation of a manifold (that is, besides orientation of a curve one may also speak of orientation of a surface, hypersurface, etc.).

Orientation of a curve is associated with parametrization of its points by a real variable. A curve may have equivalent parametrizations when there is a continuous increasing monotonic function relating the parameter of one curve to the parameter of the other. When there is a decreasing continuous function relating the parameters, then the parametric representations are opposite and the orientation of the curve is reversed.[1][2]

Orientation of a simple polygon

Selecting reference points.
Selecting reference points.

In two dimensions, given an ordered set of three or more connected vertices (points) (such as in connect-the-dots) which forms a simple polygon, the orientation of the resulting polygon is directly related to the sign of the angle at any vertex of the convex hull of the polygon, for example, of the angle ABC in the picture. In computations, the sign of the smaller angle formed by a pair of vectors is typically determined by the sign of the cross product of the vectors. The latter one may be calculated as the sign of the determinant of their orientation matrix. In the particular case when the two vectors are defined by two line segments with common endpoint, such as the sides BA and BC of the angle ABC in our example, the orientation matrix may be defined as follows:

A formula for its determinant may be obtained, e.g., using the method of cofactor expansion:

If the determinant is negative, then the polygon is oriented clockwise. If the determinant is positive, the polygon is oriented counterclockwise. The determinant is non-zero if points A, B, and C are non-collinear. In the above example, with points ordered A, B, C, etc., the determinant is negative, and therefore the polygon is clockwise.

Practical considerations

In practical applications, the following considerations are commonly taken into account.

One does not need to construct the convex hull of a polygon to find a suitable vertex. A common choice is the vertex of the polygon with the smallest X-coordinate. If there are several of them, the one with the smallest Y-coordinate is picked. It is guaranteed to be a vertex of the convex hull of the polygon. Alternatively, the vertex with the smallest Y-coordinate among the ones with the largest X-coordinates or the vertex with the smallest X-coordinate among the ones with the largest Y-coordinates (or any other of 8 "smallest, largest" X/Y combinations) will do as well. Once a vertex of the convex hull is chosen, one can then apply the formula using the previous and next vertices, even if those are not on the convex hull, as there can be no local concavity on this vertex.

If the orientation of a convex polygon is sought, then, of course, any vertex may be picked.

For numerical reasons, the following equivalent formula for the determinant is commonly used:

The latter formula has four multiplications less. What is more important in computer computations involved in most practical applications, such as computer graphics or CAD, the absolute values of the multipliers are usually smaller (e.g., when A, B, C are within the same quadrant), thus giving a smaller numerical error or, in the extreme cases, avoiding the arithmetic overflow.

When it is not known in advance that the sequence of points defines a simple polygon, the following things must be kept in mind.

For a self-intersecting polygon (complex polygon) (or for any self-intersecting curve) there is no natural notion of the "interior", hence the orientation is not defined. At the same time, in geometry and computer graphics there are a number of concepts to replace the notion of the "interior" for closed non-simple curves; see, e.g., "flood fill" and "winding number".

In "mild" cases of self-intersection, with degenerate vertices when three consecutive points are allowed be on the same straight line and form a zero-degree angle, the concept of "interior" still makes sense, but an extra care must be taken in selection of the tested angle. In the given example, imagine point A to lie on segment BC. In this situation the angle ABC and its determinant will be 0, hence useless. A solution is to test consecutive corners along the polygon (BCD, DEF,...) until a non-zero determinant is found (unless all points lie on the same straight line). (Notice that the points C, D, E are on the same line and form a 180-degree angle with zero determinant.)

Local concavity

Once the orientation of a polygon formed from an ordered set of vertices is known, the concavity of a local region of the polygon can be determined using a second orientation matrix. This matrix is composed of three consecutive vertices which are being examined for concavity. For example, in the polygon pictured above, if we wanted to know whether the sequence of points F-G-H is concave, convex, or collinear (flat), we construct the matrix

If the determinant of this matrix is 0, then the sequence is collinear - neither concave nor convex. If the determinant has the same sign as that of the orientation matrix for the entire polygon, then the sequence is convex. If the signs differ, then the sequence is concave. In this example, the polygon is negatively oriented, but the determinant for the points F-G-H is positive, and so the sequence F-G-H is concave.

The following table illustrates rules for determining whether a sequence of points is convex, concave, or flat:

Negatively oriented polygon (clockwise) Positively oriented polygon (counterclockwise)
determinant of orientation matrix for local points is negative convex sequence of points concave sequence of points
determinant of orientation matrix for local points is positive concave sequence of points convex sequence of points
determinant of orientation matrix for local points is 0 collinear sequence of points collinear sequence of points

See also

References

  1. ^ Abraham Goetz (1970) Introduction to Differential Geometry, page 28, Addison Wesley
  2. ^ Chuan-Chih Hsiung (1981) A First Course in Differential Geometry, page 84, John Wiley & Sons

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. HyebinLahirLee Hye Bin (이혜빈)12 Januari 1996 (umur 28)Andong, Korea SelatanPekerjaanPenyanyiHyebin (해빈) (lahir 12 Januari 1996) adalah seorang penyanyi Korea Selatan yang berada di bawah kontrak Duble Kick Entertainment. Ia adalah anggot...

 

Mountain in Graham Land, Antarctica Location of Trinity Peninsula in Graham Land, Antarctica. Mount Wild (64°12′S 58°53′W / 64.200°S 58.883°W / -64.200; -58.883) is a sharply defined rock ridge with several summits, the highest 945 m, standing at the north side of the entrance to Sjögren Inlet on the east coast of Trinity Peninsula in Graham Land, Antarctica. First charted by the Falkland Islands Dependencies Survey (FIDS) in 1945 and named for Frank Wild. Ref...

 

Peter SingerACSinger di tahun 2017LahirPeter Albert David Singer6 Juli 1946 (umur 77)Melbourne, Victoria, AustraliaPendidikanUniversitas Melbourne (BA, MA)University College, Oxford (BPhil)Karya terkenalThe Life You Can SaveAnimal LiberationSuami/istriRenata Diamond ​(m. 1968)​Anak3PenghargaanPenghargaan Berggruen (2021)AliranFilsafat analitikUtilitarianismeInstitusiUniversity College, OxfordNew York UniversityLa Trobe UniversityMonash UniversityPrinceton Un...

Schröcken Lambang kebesaranKoordinat: Coordinates: Missing longitude{{#coordinates:}}: lintang salahNegaraAustriaNegara bagianVorarlbergDistrikBregenzPemerintahan • WalikotaHerbert SchwarzmannLuas • Total23,43 km2 (905 sq mi)Ketinggian1.269 m (4,163 ft)Populasi (1 Januari 2014)[1] • TotalTemplat:Metadata population AT−8Zona waktuUTC+1 (WET) • Musim panas (DST)UTC+2 (WMPET)Kode pos6888Kode area telepon0551...

 

كراش بانديكوت 4: إتز أباوت تايم Crash Bandicoot 4: It's About Time المطور تويز فور بوب[ملاحظة 1] الناشر أكتيفجن الموزع بلاي ستيشن ستور،  ومتجر مايكروسوفت،  ومتجر إيبك غيمز،  وستيم،  وغوغ دوت كوم،  ونينتندو إي شوب  سلسلة اللعبة كراش بانديكوت محرك اللعبة أنريل إنجن 4  ...

 

Javier Manquillo Manquillo con la maglia del Liverpool nel 2014 Nazionalità  Spagna Altezza 180 cm Peso 70[1] kg Calcio Ruolo Difensore Squadra  Celta Vigo Carriera Giovanili 2007-2012 Atlético Madrid Squadre di club1 2012-2013 Atlético Madrid B42 (0)2012-2014 Atlético Madrid6 (0)2014-2015→  Liverpool10 (0)2015-2016→  Olympique Marsiglia31 (0)2016-2017→  Sunderland20 (1)2017-2024 Newcastle Utd96 (1)2024- Celta Vigo0 (0) Nazi...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Yu TokisakiInformasi pribadiNama lengkap Yu TokisakiTanggal lahir 15 Juni 1979 (umur 44)Tempat lahir Prefektur Fukushima, JepangPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)1998-2005 Shonan Bellmare 2005-2006 Mito HollyHock 2007-2011 Fuk...

 

U.S. television detective drama series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Thin Man TV series – news · newspapers · books · scholar · JSTOR (October 2015) (Learn how and when to remove this template message) The Thin ManPhyllis Kirk, Peter Lawford, and Asta the dog, 1957.GenreComedyDrama...

 

American politician (1760–1822) Michael LeibMember of the Pennsylvania Senate from the 1st districtIn office1818–1821Preceded byJohn ReadSucceeded byCondy RaguetMember of the Pennsylvania House of RepresentativesIn office1817–1818United States Senatorfrom PennsylvaniaIn officeJanuary 9, 1809 – February 14, 1814Preceded bySamuel MaclaySucceeded byJonathan RobertsMember of the Pennsylvania House of RepresentativesIn office1806–1808Member of the U.S. House of Repre...

В Википедии есть статьи о других людях с именем Феодорит. Феодорит Кирский Родился около 393[1]Антиохия, преторианская префектура Востока, Древний Рим Умер 457 или не ранее 458 и не позднее 466[2]Кир, Халеб, Сирия В лике святой  Медиафайлы на Викискладе Ф...

 

Smartphone model Sony Ericsson W960iCompatible networksGSM 850/900/1800/1900 + UMTS 2100PredecessorSony Ericsson W950Dimensions109 x 55 x 16 mmMass119 gMemory8 GB flash memoryDisplay240х320 pixels, 2.6”, 262K colors, touchscreenConnectivityUSB 2.0, Wi-Fi, Bluetooth 2.0 + EDR, A2DP supported The Sony Ericsson W960i is a 3G phone that Sony Ericsson announced in June 2007, as an upgrade to the W950. Features The W960 is a successor to the W950, and belongs to the Walkman series of phones. Its...

 

إيغي أزاليا Iggy Azalea معلومات شخصية اسم الولادة أميثيست أميليا كيلي الميلاد 7 يونيو 1990 (العمر 33 سنة)سيدني،  أستراليا الإقامة ميامي، فلوريدا، الولايات المتحدة الجنسية أسترالية لون الشعر شعر أشقر  الزوج بلايبوي كارتي (2018-2020) العشير نيك يونغ (نوفمبر 2013–يونيو 2016)[1][2]...

Defunct US educational book publisher This article is about the American Book Company established in 1890. For the American Book Company established in 1996, see American Book Company (1996). American Book CompanyStatusDefunctFounded1890FounderVan Antwerp, Bragg and Co., A.S. Barnes & Co., D. Appleton and Co., and Ivison, Blakeman and Co.Defunct1981 SuccessorD. C. Heath and CompanyCountry of originUnited StatesPublication typesbooksThe American Book Company (ABC) was an educational b...

 

Questa voce sugli argomenti calciatori camerunesi e calciatori equatoguineani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Narcisse Ekanga Nazionalità  Guinea Equatoriale Altezza 176 cm Calcio Ruolo Centrocampista Termine carriera 2018 CarrieraSquadre di club1 2008-2012 TP Mazembe? (?)2012-2014 Al-Hilal Omdurman? (?)2014-2015 Leones Vegetarianos? (?)2015-2016 1960 Silopispo...

 

Regional trade organization and free trade area Not to be confused with European Economic Area. EFTA redirects here. For other uses, see EFTA (disambiguation). European Free Trade Association Native names: Europäische Freihandelsassoziation (German) Fríverslunarsamtök Evrópu (Icelandic) Association européenne de libre-échange (French) Associazione europea di libero scambio (Italian) Det europeiske frihandelsforbund (Bokmål) Det europeiske frihandelsforbundet...

Duchy within the Byzantine Empire Duchy of the PentapolisDucatus PentapolisΔουκάτον ΠενταπόλεωςDuchy of the Byzantine Empire7th century – c. 752The Pentapolis on the Adriatic was part of the Exarchate of Ravenna, an administrative unit of the Byzantine Empire. Red dots indicate the Pentapolis, orange other cities of the Exarchate.CapitalRiminiHistorical eraMiddle Ages• Establishment 7th century• Conquered by Lombard king Aistulf c. 752 Today part ofItaly In ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Charles RigoulotCharles Rigoulot, 1923Informasi pribadiLahir3 November 1903Le Vésinet, PrancisMeninggal22 Agustus 1962(1962-08-22) (umur 58)Paris, PrancisTinggi173 m (567 ft 7 in)Berat82 kg (181 pon) (181 pon) OlahragaOl...

 

  لمعانٍ أخرى، طالع معهد الإدارة العامة (توضيح). معهد الإدارة العامة معهد الإدارة العامة (السعودية) تفاصيل الوكالة الحكومية البلد السعودية  تأسست 24 شوال 1380هـ المركز الرياض  الإدارة المدير التنفيذي الدكتور بندر بن أسعد السجان، مدير المعهد الفروع معهد الإدارة العا...

Fort in New York City's Central Park Blockhouse No. 1North Woods, Central Park, Manhattan Blockhouse No. 1Show map of New York CityBlockhouse No. 1Show map of New YorkBlockhouse No. 1Show map of the United StatesCoordinates40°47′55″N 73°57′23″W / 40.79866°N 73.95629°W / 40.79866; -73.95629TypeBlockhouseSite historyBuilt1812–1814MaterialsSandstone, schistFateClosed Notable buildings and structures of Central Park. Click on the map and then on the points fo...

 

Australian cyclist (born 1986) Anthony GiacoppoPersonal informationBorn (1986-05-13) 13 May 1986 (age 38)Team informationCurrent teamAvanti IsoWhey SportsDisciplineRoadRoleRiderRider typeSprinterProfessional team2011–Genesys Wealth Advisers Anthony Giacoppo (born 13 May 1986) is an Australian cyclist riding for Avanti IsoWhey Sports.[1] Major results 2011 2nd National Criterium Championships 2012 1st National Criterium Championships 5th Tour de Taiwan 1st Stages 1 &am...