Cryptic unstable transcript

Cryptic unstable transcripts (CUTs) are a subset of non-coding RNAs (ncRNAs) that are produced from intergenic and intragenic regions. CUTs were first observed in S. cerevisiae yeast models and are found in most eukaryotes.[1] Some basic characteristics of CUTs include a length of around 200–800 base pairs,[2] a 5' cap, poly-adenylated tail, and rapid degradation due to the combined activity of poly-adenylating polymerases and exosome complexes.[1][3] CUT transcription occurs through RNA Polymerase II and initiates from nucleosome-depleted regions, often in an antisense orientation.[2][4] To date, CUTs have a relatively uncharacterized function but have been implicated in a number of putative gene regulation and silencing pathways.[5][6][7][8] Thousands of loci leading to the generation of CUTs have been described in the yeast genome.[9] Additionally, stable uncharacterized transcripts, or SUTs, have also been detected in cells and bear many similarities to CUTs but are not degraded through the same pathways.

Discovery and characterization

Regions of non-coding RNA were mapped in several early experiments examining S. cerevisiae using a tiling array approach, which indicated that a large amount of transcriptional activity could be attributed to the intergenic region of the genome.[10] These detected transcripts are not readily observed in the mRNA population because they are rapidly targeted for degradation in both the nucleus and cytoplasm.[1] However, CUTs can be examined in yeast mutants with compromised exosome enzyme capability, which allows for transcripts to accumulate and enables their study and characterization.

In 2009, the Steinmetz and Jacquier laboratories performed a series of high-resolution transcriptome maps,[4][11] further characterizing the widespread distribution and location of non-coding transcripts within eukaryotes. CUTs were found to comprise around 13% of all mapped transcripts.[2]

Degradation pathways

As CUTs cannot be observed at appreciable levels in wild-type S. cerevisiae, a large component of their early study has focused on their degradation. To date, two main pathways have been identified: the recruitment of a degrading exosome via the Nrd1-Nab3-Sen1 protein complex assisted by TRAMP, and termination due to the poly-adenylating capability of the Pap1p complex.[12] In addition to these two main pathways, 5' processing enzymes such as Xrn1[13] have also been shown to participate in CUT degradation.[2] Many of these findings were generated by observing Δrrp6 cells, a knock-out mutant for the exosome enzyme which has heightened levels of cryptic transcripts mapped to transgenic regions.[3][9] In fact, deletion of the RRP6 subunit has served as one of the earliest and most frequently used methods for generating high concentrations of CUTs.

The Nrd1-Nab3-Sen1 and TRAMP pathway

Transcription of CUTs is terminated by the Nrd1-Nab3-Sen1 complex.[14][15] Collectively, Nrd1 and Nab3 are proteins which bind to specific sequences (GUAA/G and UCUUG respectively) of RNA[16] and Sen1 is helicase.[17] Nrd1-Nab3-Sen1 recruit the nuclear exosome which contains the degrading RRP6 subunit.[12] Assisting in the Nrd1-Nab3-Sen1 pathway as a co-factor is the TRAMP complex,[13] which is responsible for poly-adenylating transcripts and marking them for degradation. The TRAMP complex was discovered in Δrrp6 cells, when a certain population of poly-adenylated CUTs were attributed to the activity of a novel yeast polymerase, Trf4p. Trf4p was found to associate in a Trf4p/trf5p-Air1p/Air2p-Mtr4 complex[9] (a collective complex referred to as TRAMP: Trf-Air-Mtr4 Polyadenylation complex) which serves as an alternative Poly(A) polymerase to Pap1p within S. Cerevisiae.

Role of Xrn1

Cytoplasmic decay of unstable transcripts can also be attributed to the activity of decapping enzymes and Xrn1.[2] Transcripts that enter the cytoplasm can be targeted by the Dcp1-Dcp2 complex which removes the 5' cap, allowing for the 5' to 3' exoribonuclease Xrn1 to degrade the transcript completely.[18] The role of Dcp1-Dcp2 and Xrn1 in cytoplasmic decay has also been found to participate in the regulation of SUT levels.

Relation with bidirectional promoters

The transcription start sites of CUTs are located within nucleosome free, non-overlapping transcript pairs.[4] These nucleosome free regions of the genome have been frequently correlated with the promoter regions of open reading frames and mRNA transcripts, indicating that a portion of CUTs are located within bidirectional promoters. Additionally, serial analysis of gene expression has demonstrated that the location of CUT 3' ends can be found in close proximity to the start features of ORFs in both sense and antisense configurations,[11] indicating that the end of CUT sequences lay within the 5' promoter region of expressed proteins.

Sense CUTs have been largely found in promoters associated with glucose catabolism genes, while antisense CUTs have no specific associations and are found dispersed in promoters across the entire genome.[11]

SUTs

Stable uncharacterized transcripts or stable unannotated transcripts (SUTs) share certain similar characteristics to CUTs – they can originate from the intergenic region, are non-coding transcripts, and undergo 5' to 3' cytoplasmic degradation. Like CUTs, SUT transcription start sites are also found at nucleosome free regions[4] and are associated with the promoters of protein coding genes.[11] However, SUTs can be observed in both Δrrp6 mutants and wild-type cells, indicating they are only partially degraded by the exosome[19] and are able to escape the Nrd1-Nab3-Sen1 pathway. SUTs are primarily degraded instead by the combined activity of the decapping enzymes Dcp1, Dcp2 and the cytoplasmic exonuclease Xrn1.[19]

One class of SUTs has been found to participate in the trans-silencing of a retrotransposon.

Interaction with histones

CUT repression

Within yeast models, it has been observed that the histone methyltransferase Set2 is critical for maintaining proper methylation at histone 3 lysine 36 (H3K36). Loss of Set2 function results in loss of H3K36 methylation and over-acetylation on histone H4, allowing for the expression of several short cryptic transcripts from the genes STE11 and FLO8. In this case, the loss of Set2 allows for the expression of exon-derived CUTs as opposed to intergenic-derived transcripts, showing the role that histones play in controlling intragenic-derived CUTs.[20]

In the absence of the transcription elongation factors Spt6 and Spt16, nucleosomes distribute incorrectly across DNA, allowing for RNA polymerase II to access cryptic polymerase sites and erroneously transcribe CUTs.[20] Spt6 is responsible for restoring normal chromatin structure following transcription from RNA polymerase II, and yeast cells with compromised Spt6 function have been found to produce an increased number of CUTs.[21] For instance, RNA polymerase II has been observed to bind incorrectly to the interior initiation region of the FLO8 gene in spt6 mutants, allowing for cryptic transcription to occur due to an erroneous nucleosome distribution.[21]

Histone eviction/recruitment through CUTs

A cryptic transcript located at the promoter of PHO5 that is detectable in Δrrp6 mutants is responsible for increasing the speed of promoter remodeling. Knock-out mutants without the ability to transcribe the CUT have about half the rate of histone eviction from the PHO5 promoter compared to wild-type cells,[7] implying that the CUT is responsible for mediating the accessibility of the PHO5 promoter to RNA Polymerase II.

It has also been observed in S. cerevisiae that Δrrp6 and Δtrf4 mutants have repressed transcription of the gene PHO84. Δrrp6 and Δtrf4 cells have stabilized levels of PHO84 antisense transcripts, which serve to recruit the Hda1/2/3 histone deacetylase complex to the PHO84 gene, effectively silencing transcription and expression through histone deacetylation. In Δrrp6 cells, Hda1 associates with the promoter or coding regions of PHO84 up to five times more often than in wild-type counterparts. Additionally, histone deacetylation activity occurs specifically at the region of PHO84 and Hda1 overlap on histone 3 lysine 18 (H3K18),[6] indicating that the CUT is responsible for recruiting the histone deacetylase. Along with antisense TY1 transcripts, PHO84 antisense transcripts can serve a potential regulatory function in S. Cerevisiae.

PROMPTs

Promoter upstream transcripts (PROMPTs) are found around 1–1.5 kb upstream of human transcription start sites in nongenic regions.[22] Like CUTs, PROMPTs are a form of noncoding RNAs that become detectable in the absence of a degrading exosome enzyme. PROMPTs were first identified in siRNA-silenced hRrp40 human cells, where hRrp40 serves as a core subunit of the human exoribonucleolytic exosome. PROMPT-encoding regions have been found to produce sense and antisense transcripts, both of which are equally targeted by the exosome.

In terms of function, ncRNAs with putative regulatory functions have been located to potential PROMPT regions.[22] As a large portion of the human genome has been shown to be transcribed,[22] the existence of PROMPTs helps explain a portion of the non-coding transcripts that are still generated.

Function

Although an endogenous RNA interference pathway does not exist within S. cerevisiae, CUTs and SUTs may serve a comparable function. There has been an observed similarity between the suppression of the transposable element TY1 in yeast and small interfering RNA activity within plants. In XRN1 mutants, TY1 transcripts decrease in number and TY1 antisense transcripts increase. These antisense TY1 transcripts reduce TY1 transposition activity in a trans manner and mitigates its expression,[5] indicating a potential role for CUTs and SUTs in epigenetics. Similarly, expression of the ncRNA SRG1 in S. Cerevisiae represses the transcriptional activity of the SER3 phosphoglycerate dehydrogenase gene.[8]

The rapidly degraded antisense transcripts of the gene PHO84 have also been shown to recruit the histone deacetylase Hda1 to the PHO84 gene, effectively suppressing PHO84 expression.[6]

See also

References

  1. ^ a b c Thompson D, Parker R (2007). "Cytoplasmic Decay of Intergenic Transcripts in Saccharomyces cerevisiae". Molecular and Cellular Biology. 27 (1): 92–101. doi:10.1128/MCB.01023-06. PMC 1800667. PMID 17074811.
  2. ^ a b c d e Berretta J, Morillon A (2009). "Pervasive transcription constitutes a new level of eukaryotic genome regulation". EMBO Reports. 10 (9): 973–982. doi:10.1038/embor.2009.181. PMC 2750061. PMID 19680288.
  3. ^ a b Davis CA, Ares M (2006). "Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae". PNAS. 103 (9): 3262–3267. Bibcode:2006PNAS..103.3262D. doi:10.1073/pnas.0507783103. PMC 1413877. PMID 16484372.
  4. ^ a b c d Xu Z; et al. (2009). "Bidirectional promoters generate pervasive transcription in yeast". Nature. 457 (7232): 1033–1037. Bibcode:2009Natur.457.1033X. doi:10.1038/nature07728. PMC 2766638. PMID 19169243.
  5. ^ a b Berretta J, Pinskaya M, Morillon A (2008). "A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae". Genes Dev. 22 (5): 615–626. doi:10.1101/gad.458008. PMC 2259031. PMID 18316478.
  6. ^ a b c Camblong J; et al. (2007). "Antisense RNA Stabilization Induces Transcriptional Gene Silencing via Histone Deacetylation in S. cerevisiae". Cell. 131 (4): 706–717. doi:10.1016/j.cell.2007.09.014. PMID 18022365.
  7. ^ a b Uhler J, Hertel C, Svejstrup J (2007). "A role for noncoding transcription in activation of the yeast PHO5 gene". PNAS. 104 (19): 8011–8016. Bibcode:2007PNAS..104.8011U. doi:10.1073/pnas.0702431104. PMC 1859995. PMID 17470801.
  8. ^ a b Martens J, Laprade L, Winston F (2004). "Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene". Nature. 429 (6991): 571–574. Bibcode:2004Natur.429..571M. doi:10.1038/nature02538. PMID 15175754. S2CID 809550.
  9. ^ a b c Wyers F; et al. (2005). "Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase". Cell. 121 (5): 725–737. doi:10.1016/j.cell.2005.04.030. PMID 15935759.
  10. ^ Johnson J; et al. (2005). "Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments". Trends in Genetics. 21 (2): 93–102. doi:10.1016/j.tig.2004.12.009. PMID 15661355.
  11. ^ a b c d Neil H; et al. (2009). "Widespread bidirectional promoters are the major source of cryptic transcripts in yeast". Nature. 457 (7232): 1038–1042. Bibcode:2009Natur.457.1038N. doi:10.1038/nature07747. PMID 19169244. S2CID 4329373.
  12. ^ a b Vasiljeva L, Buratowski S (2006). "Nrd1 Interacts with the Nuclear Exosome for 3′ Processing of RNA Polymerase II Transcripts". Molecular Cell. 21 (2): 239–248. doi:10.1016/j.molcel.2005.11.028. PMID 16427013.
  13. ^ a b Houseley J, Tollervey D (2009). "The Many Pathways of RNA Degradation". Nature. 136 (4): 763–776. doi:10.1016/j.cell.2009.01.019. PMID 19239894.
  14. ^ Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P, Gagneur J, Soeding J, Cramer P (Nov 2013). "Transcriptome surveillance by selective termination of noncoding RNA synthesis". Cell. 155 (5): 1075–87. doi:10.1016/j.cell.2013.10.024. hdl:11858/00-001M-0000-0015-39ED-1. PMID 24210918.
  15. ^ Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D (Sep 2006). "Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance". Mol Cell. 23 (6): 853–64. doi:10.1016/j.molcel.2006.07.029. PMID 16973437.
  16. ^ Carroll; et al. (2004). "Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts". Molecular Cell Biology. 24 (14): 6241–6252. doi:10.1128/mcb.24.14.6241-6252.2004. PMC 434237. PMID 15226427.
  17. ^ Porrua O, Libri D (Jul 2013). "A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast". Nat Struct Mol Biol. 20 (7): 884–91. doi:10.1038/nsmb.2592. PMID 23748379. S2CID 20615332.
  18. ^ Wu L, Belasco S (2008). "Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs". Molecular Cell. 29 (1): 1–7. doi:10.1016/j.molcel.2007.12.010. PMID 18206964.
  19. ^ a b Marquadt S, Hazelbaker D, Buratowski S (2011). "Distinct RNA degradation pathways and 3' extensions of yeast non-coding RNA species". Transcription. 2 (3): 145–154. doi:10.4161/trns.2.3.16298. PMC 3149692. PMID 21826286.
  20. ^ a b Carrozza M; et al. (2005). "Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription". Cell. 123 (4): 581–592. doi:10.1016/j.cell.2005.10.023. PMID 16286007.
  21. ^ a b Kaplan C, Laprade L, Winston F (2003). "Transcription Elongation Factors Repress Transcription Initiation from Cryptic Sites". Science. 301 (5636): 1096–1099. Bibcode:2003Sci...301.1096K. doi:10.1126/science.1087374. PMID 12934008. S2CID 24249508.
  22. ^ a b c Preker P; et al. (2008). "RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters". Science. 322 (5909): 1851–1854. Bibcode:2008Sci...322.1851P. doi:10.1126/science.1164096. PMID 19056938.

Read other articles:

Kedaung A bed of blue mussels, Mytilus edulis, in the intertidal zone in Cornwall, England SubclassesPteriomorphia (marine mussels) Palaeoheterodonta (freshwater mussels) Heterodonta (zebra mussels)lbs Kedaung ( /ˈmʌsəl/) adalah nama umum yang digunakan untuk anggota beberapa famili moluska kerang, dari habitat air asin dan air tawar . Kelompok-kelompok ini memiliki kesamaan cangkang yang bentuknya memanjang dan asimetris dibandingkan dengan kerang lain yang dapat dimakan, yang seringkali ...

 

Cet article est une ébauche concernant l’agriculture et les Rosacées. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Lady WilliamsPrésentationType Variété de pomme de culturemodifier - modifier le code - modifier Wikidata La « Lady Williams » est un cultivar de pomme issue d'un semis chanceux réalisé à Donnybrook, dans l'Ou...

 

Tingkat-tingkat energi sebuah sistem. Tingkat terendah adalah keadaan dasar (ground state) dan sistem tersebut dapat mengalami eksitasi hingga mencapai tingkat-tingkat di atasnya (excited states). Dalam fisika, tingkat energi (energy level atau energy state) adalah besar energi tertentu yang dapat dimiliki sebuah atom, inti atom, atau partikel subatom yang terikat pada ruang tertentu. Menurut mekanika kuantum, partikel atau sistem tersebut tidak dapat memiliki energi dengan besar sembarang, t...

Cet article est une ébauche concernant un logiciel libre. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. GNU Zile Informations Développé par Projet GNU Première version 6 juin 1997 Dernière version 2.6.2 (4 mai 2021)[1] Dépôt git.savannah.gnu.org/cgit/zile.git Écrit en C et Lisp Système d'exploitation GNU/Linux, BSD et macOS Environnement GNU/Linux, FreeBSD, NetBSD, OpenBSD, GNU, Mac OS X Langues Angla...

 

Matthæus Yrsseliusabate ordinario della Chiesa cattolicaRitratto di Yrsselius dipinto da Peter Paul Rubens. Incarichi ricopertiAbate dell'Abbazia di San Michele di Anversa  Nominato abate ordinario1614   Manuale Matthæus Yrsselius o Irsselius, forma latinizzata di Mattheus van Iersel (1541 – 1629) è stato un religioso belga, abate dell'Abbazia di San Michele di Anversa dal 1614 fino alla sua morte. È ricordato come un mecenate delle arti e delle scienze. Mecenatismo Nel 1...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды...

English physical chemist (1874–1936) Thomas Martin LowryLowry, c. 1910Born(1874-10-26)26 October 1874Low Moor, Bradford, UKDied2 November 1936(1936-11-02) (aged 62)Cambridge, UKNationalityBritishKnown forBrønsted–Lowry acid–base theoryAwardsFellow of the Royal Society[1]Scientific careerFieldsPhysical chemistryDoctoral advisorHenry Edward Armstrong Martin Lowry Thomas Martin Lowry CBE FRS[1] (/ˈlaʊri/; 26 October 1874 – 2 November 1936) was an English ...

 

Extinct genus of dinosaurs CamarillasaurusTemporal range: Early Cretaceous, 130–125 Ma PreꞒ Ꞓ O S D C P T J K Pg N ↓ Holotype vertebra and rib fossils Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Clade: Dinosauria Clade: Saurischia Clade: Theropoda Family: †Spinosauridae (?) Genus: †CamarillasaurusSánchez-Hernández & Benton, 2014 Type species †Camarillasaurus cirugedaeSánchez-Hernández & Benton, 2014 Camarillasaurus (me...

 

迪奥斯达多·马卡帕加尔Diosdado Pangan Macapagal第9任菲律賓總統任期1961年12月30日—1965年12月30日前任卡洛斯·P·加西亚继任费迪南德·马科斯第6任菲律賓副總統任期1957年12月30日—1961年12月30日前任卡洛斯·P·加西亚继任伊曼纽尔·佩莱斯 个人资料出生(1910-09-28)1910年9月28日 美屬菲律賓馬尼拉逝世1997年4月21日(1997歲—04—21)(86歲) 菲律賓馬卡迪墓地 菲律賓馬卡迪達義市英...

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒...

 

Air Tahiti IATA ICAO Kode panggil VT VTA AIR TAHITI Didirikan1953PenghubungBandar Udara Internasional Faa'aArmada11Tujuan34Kantor pusatPapeete, Tahiti, Polinesia PrancisSitus webhttp://www.airtahiti.aero/ Air Tahiti merupakan sebuah maskapai penerbangan regional yang berbasis di Papeete, Tahiti, Polinesia Prancis. Jaringan Air Tahiti mencakup 46 pulau di Polinesia Prancis. Basis utamanya terletak di Bandar Udara Internasional Faa'a, Papeete.[1] Data Kode Kode IATA: VT Kode ICAO: VTA P...

 

Robert MullikenRobert Mulliken, Chicago 1929BiographieNaissance 7 juin 1896NewburyportDécès 31 octobre 1986 (à 90 ans)Comté d'ArlingtonNom dans la langue maternelle Robert Sanderson MullikenNationalité américaineFormation Université HarvardUniversité de ChicagoMassachusetts Institute of TechnologyActivités Physicien, chimiste théoricien, professeur d'universitéPère Samuel Parsons Mulliken (en)Autres informationsA travaillé pour Université d'État de FlorideUniversité de Ch...

Restoration procedure in dentistry Onlay redirects here. For the town in France, see Onlay, Nièvre. Structure of dental inlays and onlays In dentistry, inlays and onlays are used to fill cavities,[1] and then cemented in place in the tooth. This is an alternative to a direct restoration, made out of composite, amalgam or glass ionomer, that is built up within the mouth.Inlays and onlaysICD-9-CM23.3MeSHD007284[edit on Wikidata]Inlays and onlays are used in molars or premolars, whe...

 

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (November 2010) Town in Northeast Constituency, IcelandReyðarfjörðurTownThe town of ReyðarfjörðurLocation of the Municipality of FjarðabyggðReyðarfjörðurLocation in IcelandCoordinates: 65°02′N 14°13′W / 65.033°N 14.217°W / 65.033; -14.217Country IcelandConstituencyNortheast ConstituencyRegionEastern RegionMunicipality Fjarð...

 

This article contains the Meitei alphabet. Without proper rendering support, you may see errors in display. Ethnic group ChotheChothe written in Manipuri script (Meitei script)Total population3,585 approx,[1] ManipurLanguagesChothe language (L1) Meitei language (L2)[2]ReligionChristianityRelated ethnic groupsMeitei people, other Kuki people The Chothe people is one of the Naga ethnic group found in the state of Manipur, India. Some historians and anthropologists have erroneou...

Bus transit holding company in North America Coach USA, LLCA Coach USA bus in Newburgh, New YorkParentVariant Equity AdvisorsFounded1995Headquarters160 NJ Route 17 NorthParamus, New Jersey 07652LocaleUnited StatesService areaNew York, Pittsburgh and Chicago metropolitan areas, Southern Tier of New York, southern WisconsinService typeLocal, commuter, charter, contract, and yellow school bus service, MegabusRoutesNortheast Division (excluding Megabus): 55 directly owned 43 under contract North ...

 

Location of Hamilton County in New York Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) List of the National Register of Historic Places listings in Hamilton County, New York This is intended to be a complete list of properties and districts listed on the National Register of Historic Places in Hamilton County, New York. The locations of National Register properties and districts (at least for al...

 

Species of oak tree Black oak Planted tree Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Fagales Family: Fagaceae Genus: Quercus Subgenus: Quercus subg. Quercus Section: Quercus sect. Lobatae Species: Q. velutina Binomial name Quercus velutinaLam.[2] Generalized natural range Synonyms[3] List Quercus discolor Aiton Quercus leiodermis Ashe...

Cet article est une ébauche concernant un monument culturel serbe. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Premier hôpital de la villeПрва варошка болницаPrva varoška bolnicaLe premier hôpital de la ville de BelgradePrésentationDestination initiale HôpitalStyle NéoromantismeArchitecte Jovan FrenclConstruction 1868Patrimonialité Bien culturel de la Ville de BelgradeLocalisationPa...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Coraciiformes Periode Eosen Pertengahan hingga kini PreЄ Є O S D C P T J K Pg N Coracias garrulusTaksonomiDivisiManiraptoriformesKelasAvesSupero...