Couette flow

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

The Couette configuration models certain practical problems, like the Earth's mantle and atmosphere,[1] and flow in lightly loaded journal bearings. It is also employed in viscometry and to demonstrate approximations of reversibility.[2][3]

It is named after Maurice Couette, a Professor of Physics at the French University of Angers in the late 19th century.

Planar Couette flow

Simple Couette configuration using two infinite flat plates.

Couette flow is frequently used in undergraduate physics and engineering courses to illustrate shear-driven fluid motion. A simple configuration corresponds to two infinite, parallel plates separated by a distance ; one plate translates with a constant relative velocity in its own plane. Neglecting pressure gradients, the Navier–Stokes equations simplify to

where is the spatial coordinate normal to the plates and is the velocity field. This equation reflects the assumption that the flow is unidirectional — that is, only one of the three velocity components is non-trivial. If the lower plate corresponds to , the boundary conditions are and . The exact solution

can be found by integrating twice and solving for the constants using the boundary conditions. A notable aspect of the flow is that shear stress is constant throughout the domain. In particular, the first derivative of the velocity, , is constant. According to Newton's Law of Viscosity (Newtonian fluid), the shear stress is the product of this expression and the (constant) fluid viscosity.

Startup

Startup Couette flow

In reality, the Couette solution is not reached instantaneously. The "startup problem" describing the approach to steady state is given by

subject to the initial condition

and with the same boundary conditions as the steady flow:

The problem can be made homogeneous by subtracting the steady solution. Then, applying separation of variables leads to the solution:[4]

.

The timescale describing relaxation to steady state is , as illustrated in the figure. The time required to reach the steady state depends only on the spacing between the plates and the kinematic viscosity of the fluid, but not on .

Planar flow with pressure gradient

A more general Couette flow includes a constant pressure gradient in a direction parallel to the plates. The Navier–Stokes equations are

where is the dynamic viscosity. Integrating the above equation twice and applying the boundary conditions (same as in the case of Couette flow without pressure gradient) gives

The pressure gradient can be positive (adverse pressure gradient) or negative (favorable pressure gradient). In the limiting case of stationary plates (), the flow is referred to as Plane Poiseuille flow, and has a symmetric (with reference to the horizontal mid-plane) parabolic velocity profile.[5]

Compressible flow

Compressible Couette flow for
Compressible Couette flow for

In incompressible flow, the velocity profile is linear because the fluid temperature is constant. When the upper and lower walls are maintained at different temperatures, the velocity profile is more complicated. However, it has an exact implicit solution as shown by C. R. Illingworth in 1950.[6]

Consider the plane Couette flow with lower wall at rest and the upper wall in motion with constant velocity . Denote fluid properties at the lower wall with subscript and properties at the upper wall with subscript . The properties and the pressure at the upper wall are prescribed and taken as reference quantities. Let be the distance between the two walls. The boundary conditions are

where is the specific enthalpy and is the specific heat. Conservation of mass and -momentum requires everywhere in the flow domain. Conservation of energy and -momentum reduce to

where is the wall shear stress. The flow does not depend on the Reynolds number , but rather on the Prandtl number and the Mach number , where is the thermal conductivity, is the speed of sound and is the specific heat ratio. Introduce the non-dimensional variables

In terms of these quantities, the solutions are

where is the heat transferred per unit time per unit area from the lower wall. Thus are implicit functions of . One can also write the solution in terms of the recovery temperature and recovery enthalpy evaluated at the temperature of an insulated wall i.e., the values of and for which .[clarification needed] Then the solution is

If the specific heat is constant, then . When and , then and are constant everywhere, thus recovering the incompressible Couette flow solution. Otherwise, one must know the full temperature dependence of . While there is no simple expression for that is both accurate and general, there are several approximations for certain materials — see, e.g., temperature dependence of viscosity. When and , the recovery quantities become unity . For air, the values are commonly used, and the results for this case are shown in the figure.

The effects of dissociation and ionization (i.e., is not constant) have also been studied; in that case the recovery temperature is reduced by the dissociation of molecules.[7]

Rectangular channel

Couette flow for square channel
Couette flow with h/l=0.1

One-dimensional flow is valid when both plates are infinitely long in the streamwise () and spanwise () directions. When the spanwise length is finite, the flow becomes two-dimensional and is a function of both and . However, the infinite length in the streamwise direction must be retained in order to ensure the unidirectional nature of the flow.

As an example, consider an infinitely long rectangular channel with transverse height and spanwise width , subject to the condition that the top wall moves with a constant velocity . Without an imposed pressure gradient, the Navier–Stokes equations reduce to

with boundary conditions

Using separation of variables, the solution is given by

When , the planar Couette flow is recovered, as shown in the figure.

Coaxial cylinders

Taylor–Couette flow is a flow between two rotating, infinitely long, coaxial cylinders.[8] The original problem was solved by Stokes in 1845,[9] but Geoffrey Ingram Taylor's name was attached to the flow because he studied its stability in a famous 1923 paper.[10]

The problem can be solved in cylindrical coordinates . Denote the radii of the inner and outer cylinders as and . Assuming the cylinders rotate at constant angular velocities and , then the velocity in the -direction is[11]

This equation shows that the effects of curvature no longer allow for constant shear in the flow domain.

Coaxial cylinders of finite length

The classical Taylor–Couette flow problem assumes infinitely long cylinders; if the cylinders have non-negligible finite length , then the analysis must be modified (though the flow is still unidirectional). For , the finite-length problem can be solved using separation of variables or integral transforms, giving:[12]

where are the Modified Bessel functions of the first and second kind.

See also

References

  1. ^ Zhilenko et al. (2018)
  2. ^ Guyon et al. (2001), p. 136
  3. ^ Heller (1960)
  4. ^ Pozrikidis (2011), pp. 338–339
  5. ^ Kundu et al. (2016), p. 415
  6. ^ Lagerstrom (1996)
  7. ^ Liepmann et al. (1956, 1957)
  8. ^ Landau and Lifshitz (1987)
  9. ^ Stokes (1845)
  10. ^ Taylor (1923)
  11. ^ Guyon et al. (2001), pp. 163–166
  12. ^ Wendl (1999)

Sources

Read other articles:

Wilayah Samudra Hindia Britania British Indian Ocean Territory Bendera Lambang Semboyan: In tutela nostra Limuria (Latin)Limuria dalam tanggung jawab kamiLagu kebangsaan: God Save the KingIbu kota(dan kota terbesar)Diego GarciaBahasa resmiBahasa InggrisKelompok etnik (2001[1])95.88% Orang Britania / Amerika4.12% lainnyaPemerintahanWilayah Seberang Laut Britania• Monarki Charles III• Komisaris Ben Merrick• Pengelola Linsey Billing[2]•&...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (juillet 2019). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Encrier (vers 1920). Le kitsch ou kitch est l'accu...

 

Cet article est une ébauche concernant un journaliste français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Mathieu. Luc MathieuBiographieNaissance Juin 1974 (49 ans)Saint-SaulveNationalité françaiseActivités Journaliste, reporter ou reportriceRédacteur à LibérationAutres informationsA travaillé pour Libération (depuis 2011)Distinction Prix Albert-Londres de l...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: DWET-FM – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikemb...

 

Map showing the location of Laptev Strait Laptev Strait (Russian: Пролив Дмитрия Лаптева; Yakut: Миитэрэй Лаптев силбэһиитэ, Miiterey Laptev silbehiite) is a 60 km-wide strait in Russia. It separates Great Lyakhovsky Island of the Lyakhovsky Islands from the mainland, and connects the Laptev Sea in the west with the East Siberian Sea in the east.[1] It is named after Russian explorer Dmitry Laptev.[citation needed] References ^ ...

 

Voce principale: Sport-Verein Werder von 1899. Sport-Verein Werder von 1899 IIStagione 2008-2009Sport calcio Squadra Werder Brema II Allenatore Thomas Wolter 3. Liga17º posto Maggiori presenzeCampionato: Oehrl, Stallbaum (36)Totale: Oehrl, Stallbaum (36) Miglior marcatoreCampionato: Oehrl (17)Totale: Oehrl (17) StadioWeserstadion - Platz 11 Maggior numero di spettatori2 000 vs. Eintracht Braunschweig Minor numero di spettatori200 vs. Jahn Regensburg, Wacker Burghausen Media spetta...

Donizete Nazionalità  Brasile Altezza 180[1] cm Peso 76[1] kg Calcio Ruolo Attaccante Termine carriera 2006 Carriera Squadre di club1 1987-1988 Volta Redonda2+ (2)1988-1989 São José16 (3)[2][3]1989-1990 Botafogo15 (1)1990-1995 Tecos de la UAG167 (33)1995-1996 Botafogo24 (6)1996 Verdy Kawasaki14 (6)1996-1997 Benfica16 (7)1997 Corinthians21 (4)1997-1998 Cruzeiro0 (0)1998-1999 Vasco da Gama30 (8)2000 ...

 

City in Michigan, United StatesGrand Haven, MichiganCityGrand Haven City Hall (2023)Nickname: Coast Guard City U.S.A.Location of Grand Haven within MichiganCoordinates: 43°3′47″N 86°13′42″W / 43.06306°N 86.22833°W / 43.06306; -86.22833CountryUnited StatesStateMichiganCountyOttawaFounded1834Incorporated1867Government • TypeCouncil-manager • MayorCatherine McNallyArea[1] • Total6.25 sq mi (16.19 ...

 

Indian cricketer (born 1944) Syed KirmaniPersonal informationFull nameSyed Mujtaba Hussain KirmaniBorn (1949-12-29) 29 December 1949 (age 74)Madras, Madras State, IndiaBattingRight-handedRoleBatsman, Wicket-keeperRelationsSadiq Kirmani (son)International information National sideIndia (1976–1986)Test debut (cap 138)24 January 1976 v New ZealandLast Test2 January 1986 v AustraliaODI debut (cap 17)21 February 1976 v New ZealandLast ODI...

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

 

29th Young Artist AwardsOfficial programAwarded forAchievement in 2007 in film and televisionDateMarch 30, 2008SiteSportsmen's LodgeStudio City, Los Angeles, CaliforniaHosted byZachary Gordon and AnnaSophia RobbOfficial websiteYoungArtistAwards.org ← 28th Young Artist Awards 30th → AnnaSophia Robb, winner of Best Performance in a Feature Film – Leading Young Actress Bailee Madison, winner of Best Performance in a Feature Film – Young Actress Ten and Under The 29th Yo...

 

Basilika Bunda Maria, Bintang LautBasilika Minor Bunda Maria, Bintang Laut di Biara Karmelit Stella MarisBasilika Bunda Maria, Bintang Laut di Biara Karmelit Stella MarisLokasiBiara Stella Maris, HaifaNegara IsraelDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktifAdministrasiKeuskupan AgungPatriarkat Latin Yerusalem Basilika Bunda Maria, Bintang Laut adalah sebuah gereja basilika minor Katolik yang terletak di kompleks Biara Stella Maris, Haifa, Israel. Bas...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Siraja Oloan – berita · surat kabar · buku · cendekiawan · JSTOR Artikel atau bagian mungkin perlu ditulis ulang agar sesuai dengan standar kualitas Wikipedia. Anda dapat membantu memperbaikinya. Halaman pemb...

 

The mental health of Palestinians have been described as among the worst in the world The mental health of Palestinians has been described as among the worst in the world,[1] with over half of Palestinian adults meeting the diagnostic threshold for depression[2] and a significant portion of Palestinian children experiencing mental distress, particularly in Gaza.[3] This high prevalence of mental distress among the Palestinian population has been attributed to the inter...

 

Title of honor within the French nobility This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Peerage of France – news · newspapers · books · scholar · JSTOR (August 2019) (Learn how and when to remove this message) Heraldic depiction of a duke's coronet, with blue bonnet of a peer Mantle and coronet of a duke a...

1994 video game 1994 video gameWario's WoodsNorth American NES box artDeveloper(s)TEC[1]Publisher(s)NintendoDirector(s)Kenji MikiProducer(s)Kenji MikiDesigner(s)Soichiro TomitaMasahiro IimuraNaotaka OhnishiComposer(s)Shinobu AmayakeSoyo OkaSeriesWarioPlatform(s)NES, Super NES, SatellaviewReleaseJP: February 19, 1994NA: December 10, 1994EU: 1995Genre(s)PuzzleMode(s)Single-player, multiplayer Wario's Woods[a] is a puzzle video game developed by TEC and published by Nintendo for ...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2018) أيزو 4معلومات عامةالبداية 1972[1] الاسم المختصر LTWA (بالإنجليزية) [2] الموضوع...

 

Robert Thomson dari obituarinya di dalam mingguan The Illustrated London News pada 29 Maret 1873. Robert William Thomson (26 Juli 1822 – 8 Maret 1873) adalah seorang penemu ban pneumatik.[1] Riwayat hidup Dilahirkan di Stonehaven, Kincardineshire, Robert ialah putera ke-11 dari 12 bersaudara dari keluarga pemilik pabrik pemintalan wol setempat. Keluarganya mengharapkan ia untuk belajar untuk menjadi staf kementerian namun Robert menolak, satu alasan yang dikemukakannya...

Questa voce sull'argomento calciatori ungheresi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. József BencsicsNazionalità Ungheria Calcio RuoloAttaccante CarrieraSquadre di club1 ????-1956 Haladás? (?)1957-1961 Újpesti Dózsa70 (16)1961-???? Pécs? (?) Nazionale 1957-1958 Ungheria8 (1) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il s...

 

Questa voce sull'argomento calciatori trinidadiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Cleon JohnNazionalità Trinidad e Tobago Calcio RuoloPortiere Squadra NE Stars CarrieraSquadre di club1 2008-2012 San Juan Jabloteh? (-?)2012- NE Stars? (-?) Nazionale 2013- Trinidad e Tobago1 (-?) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato...