Copper(II) acetate, also referred to as cupric acetate, is the chemical compound with the formulaCu(OAc)2 where AcO− is acetate (CH 3CO− 2). The hydrated derivative, Cu2(OAc)4(H2O)2, which contains one molecule of water for each copper atom, is available commercially. Anhydrous copper(II) acetate is a dark green crystalline solid, whereas Cu2(OAc)4(H2O)2 is more bluish-green. Since ancient times, copper acetates of some form have been used as fungicides and green pigments. Today, copper acetates are used as reagents for the synthesis of various inorganic and organic compounds.[5] Copper acetate, like all copper compounds, emits a blue-green glow in a flame.
Structure
Copper acetate hydrate adopts the paddle wheel structure seen also for related Rh(II) and Cr(II) tetraacetates.[6][7] One oxygen atom on each acetate is bound to one copper atom at 1.97 Å (197 pm). Completing the coordination sphere are two water ligands, with Cu–O distances of 2.20 Å (220 pm). The two copper atoms are separated by only 2.62 Å (262 pm), which is close to the Cu–Cu separation in metallic copper.[8][9][10][11] The two copper centers interact resulting in a diminishing of the magnetic moment such that at temperatures below 90 K, Cu2(OAc)4(H2O)2 is essentially diamagnetic. Cu2(OAc)4(H2O)2 was a critical step in the development of modern theories for antiferromagneticexchange coupling, which ascribe its low-temperature diamagnetic behavior to cancellation of the two opposing spins on the adjacent copper atoms.[12]
The reaction proceeds via the intermediacy of copper(I) acetylides, which are then oxidized by the copper(II) acetate, releasing the acetylide radical. A related reaction involving copper acetylides is the synthesis of ynamines, terminal alkynes with amine groups using Cu2(OAc)4.[15] It has been used for hydroamination of acrylonitrile.[16]
Heating a mixture of anhydrous copper(II) acetate and copper metal affords copper(I) acetate:[17][18]
Cu + Cu(OAc)2 → 2 CuOAc
Unlike the copper(II) derivative, copper(I) acetate is colourless and diamagnetic.
"Basic copper acetate" is prepared by neutralizing an aqueous solution of copper(II) acetate. The basic acetate is poorly soluble. This material is a component of verdigris, the blue-green substance that forms on copper during long exposures to atmosphere.
Other uses
A mixture of copper acetate and ammonium chloride is used to chemically color copper with a bronze patina.[19]
Mineralogy
The mineral hoganite is a naturally occurring form of copper(II) acetate.[20][21] A related mineral, also containing calcium, is paceite.[21] Both are very rare.[22][23]
^Parish, E. J.; Kizito, S. A. (2001). "Copper(I) Acetate". Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X.rc193. ISBN0471936235.