Contour boxplot

In statistical graphics and scientific visualization, the contour boxplot[1] is an exploratory tool that has been proposed for visualizing ensembles of feature-sets determined by a threshold on some scalar function (e.g. level-sets, isocontours). Analogous to the classical boxplot and considered an expansion of the concepts defining functional boxplot,[2][3] the descriptive statistics of a contour boxplot are: the envelope of the 50% central region, the median curve and the maximum non-outlying envelope.

To construct a contour boxplot, data ordering is the first step. In functional data analysis, each observation is a real function, therefore data ordering is different from the classical boxplot where scalar data are simply ordered from the smallest sample value to the largest. More generally, data depth, gives a center-outward ordering of data points, and thereby provides a mechanism for constructing rank statistics of various kinds of multidimensional data. For instance, functional data examples can be ordered using the method of band depth or a modified band depth. In contour data analysis, each observation is a feature-set (a subset of the domain), and therefore not a function. Thus, the notion of band depth and modified band depth is further extended to accommodate features that can be expressed as sets but not necessarily as functions. Contour band depth allows for ordering feature-set data from the center outwards and, thus, introduces a measure to define functional quantiles and the centrality or outlyingness of an observation. Having the ranks of feature-set data, the contour boxplot is a natural extension of the classical boxplot which in special cases reduces back to the traditional functional boxplot.

Set/contour band depth

Set band depth (introduced in[1]), denoted as sBD, is a method for establishing a center-outward ordering of a collection of sets. As with other band depth, data ordering methods, set band depth, computes the probability of whether a sample lies in the band formed by j other samples from the distribution. We say that a set S ∈ E is an element of the band of a collection of j other sets S1, ..., Sj ∈ E if it is bounded by their union and intersection. That is:

The set band depth is the sum of probabilities of lying in bands formed by different numbers of samples (2, ..., J).

Set band depth is shown to be a generalization of function band depth. Set band depth has a modified form that is derived from a relaxed form of subset, which requires only a percentage of a set to be included in another.

Contour band depth (cBD) is a direct application of sBD, where the sets are derived from thresholded input functions, F(x) > q. In this way, an ensemble of scalar input functions and a threshold value, gives rise to a collection of contours, and sorting cBD gives a data-depth ordering (highest-to-lowest probability gives greatest-to-smallest depth) of those contours. By relying on the set formulation, contour boxplots avoid any explicit correspondence of points on different contours.

Contour boxplot construction

In the classical boxplot, the box itself represents the middle 50% of the data. Since the data ordering in the contour boxplot is from the center outwards, the 50% central region is defined by the band delimited by the 50% of deepest, or the most central observations. The border of the 50% central region is defined as the envelope representing the box in a classical boxplot. Thus, this 50% central region is the analog to the interquartile range (IQR) and gives a useful indication of the spread of the central 50% of the curves. This is a robust range for interpretation because the 50% central region is not affected by outliers or extreme values, and gives a less biased visualization of the curves' spread. The observation in the box indicates the median, or the most central observation which is also a robust statistic to measure centrality.

The "whiskers" of the boxplot are the vertical lines of the plot extending from the box and indicating the maximum envelope of the dataset except the outliers. In contour boxplots, this is formed by considering the difference of the union and intersection formed by all non-outlying samples. Outliers are determined as having a cBD value that is less than some multiplier (less than one) times the cBD of the 50% ranked samples.

Examples

The following example is an ensemble of data from 2D incompressible Navier–Stokes simulation consisting of 40 members, where each ensemble member is a simulation with Reynolds number and inlet velocity chosen randomly. The inlet velocity values are randomly drawn from a normal distribution with mean value of 1 and standard deviation of ±0.01 (in non-dimensionalized units); likewise, Reynolds numbers are generated from a normal distribution with mean value of 130 and standard deviation of ±3.

The example below is from an ensemble of publicly available data from the National Oceanic and Atmospheric Administration (NOAA) [1]. The ensemble data are formed through different runs of a simulation model with different perturbations of the initial conditions to account for the errors in the initial conditions and/or model parameterizations. The ensemble consists of isocontours of the temperature field (isovalue −15C) at 500mb in altitude.

See also

References

  1. ^ a b Whitaker, Ross T.; Mahsa Mirzargar; Robert M. Kirby (2013). "Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles". IEEE Transactions on Visualization and Computer Graphics. 19 (12): 2713–2722. CiteSeerX 10.1.1.420.6659. doi:10.1109/TVCG.2013.143. PMID 24051838. S2CID 2332058.
  2. ^ Hyndman, Rob J.; Han Lin (2010). "Rainbow Plots, Bagplots, and Boxplots for Functional Data" (PDF). Journal of Computational and Graphical Statistics. 19 (1): 29–45. doi:10.1198/jcgs.2009.08158. S2CID 6549436.
  3. ^ Sun, Y.; M.G. Genton (2011). "Functional boxplots". Journal of Computational and Graphical Statistics. 20 (2): 316–334. doi:10.1198/jcgs.2011.09224. S2CID 51740751.

Read other articles:

Hippo RegiusReruntuhan Hippo RegiusLokasiAljazairWilayahProvinsi AnnabaKoordinat36°53′0″N 7°45′7″E / 36.88333°N 7.75194°E / 36.88333; 7.75194Koordinat: 36°53′0″N 7°45′7″E / 36.88333°N 7.75194°E / 36.88333; 7.75194 Hippo Regius (juga dikenal dengan sebutan Hippo atau Hippone) adalah sebuah kota Fenisia, Berber dan Romawi yang kini terletak di Provinsi Annaba di Aljazair. Kota ini awalnya merupakan sebuah koloni Tirus yang ...

 

Kiki Dimoula merupakan wanita kebangsaan Yunani yang dianggap oleh banyak orang sebagai salah satu penyair terhebat dari generasi pasca perang. Dimoula lahir di Kypseli pada tahun 1931. Salah satu penulis Yunani yang bernama Nikos Dimou menyebut Dimoula sebagai The best greek woman poet since Sapho.[1] Sebelum menjadi seorang penyair, Dimoula berkerja di salah satu Bank yang berada di Yunani.[2] Ketika bekerja di Bank of Greece yang menurutnya mencekik, suasana menulis puisi ...

 

The Last King of ScotlandPoster film The Last King of ScotlandSutradaraKevin MacdonaldProduserCharles SteelLisa BryerAndrea CalderwoodDitulis olehJeremy BrockPeter MorganBerdasarkanThe Last King of Scotlandoleh Giles FodenPemeranForest WhitakerJames McAvoyKerry WashingtonSimon McBurneyGillian AndersonPenata musikAlex HeffesSinematograferAnthony Dod MantlePenyuntingJustine WrightPerusahaanproduksiDNA FilmsFilm 4DistributorSearchlight PicturesTanggal rilis 27 September 2006 (2006-09-...

PausYohanes II dari AleksandriaPaus Aleksandria ke-30 & Patriarkh Tahta St. MarkusAwal masa jabatan29 Mei 505Masa jabatan berakhir22 May 516PendahuluYohanes IPenerusDioskorus IIInformasi pribadiLahirMesirWafat22 Mei 516MesirMakamGereja Santo MarkusKewarganegaraanMesirDenominasiKristen Ortodoks KoptikKediamanGereja Santo Markus Paus Yohanes II (III) dari Aleksandria adalah Paus Aleksandria ke-30 & Patriarkh Tahta St. Markus. Ia disebut Yohanes III oleh Gereja Ortodoks Timur, karena men...

 

الدوري الكويتي 2008–09معلومات عامةالرياضة كرة القدم الاتحاد الاتحاد الآسيوي لكرة القدم البطولة الدوري الكويتي الفئة كرة القدم للرجال النسخة 47 الفترة 2008 البداية أكتوبر 2008 النهاية مايو 2009 البلد الكويت الفرق المشاركة 8 الموسمالبطل نادي القادسية الكويتي المواسمالدوري الكويت�...

 

Species of eucalyptus Flat-topped yate Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: Myrtaceae Genus: Eucalyptus Species: E. occidentalis Binomial name Eucalyptus occidentalisEndl. Synonyms Eucalyptus agnata Domin Eucalyptus occidentalis var. occidentalis Eucalyptus occidentalis, commonly known as the flat topped yate or the swamp yate, is a tree that is native to Western Australia.[1] The ...

Grade I listed house in South Northamptonshire, United Kingdom Sulgrave ManorTypeHouseLocationSulgrave, NorthamptonshireCoordinates52°06′21″N 1°10′57″W / 52.1058°N 1.1826°W / 52.1058; -1.1826Built1540–1560; 464 years ago (1560)Architectural style(s)Tudor hall houseOwnerSulgrave Manor Trust Listed Building – Grade IOfficial nameThe Manor House and attached BrewhouseDesignated4 February 1969Reference no.1371865 Listed Building – G...

 

Freeport-McMoRan Copper & Gold Inc.JenisPerusahaan publikIndustriPertambanganDidirikan1912KantorpusatPhoenix, AZ, Amerika SerikatTokohkunciSir.Azwana Azwani(Chairman of the Board)Richard C. Adkerson(President) (CEO) (Direktur)William Kennon McWilliams, Jr(Founder)ProdukTembagaEmasMolibdenumPendapatan $ 18,982 milyar (2013)Laba operasi $ 8,987 milyar (2013)Laba bersih $ 4,336 milyar (2013)Total aset $ 29,386 milyar (2013)Total ekuitas $ 12,504 milyar (2013)Karyawan29,700 - June 2011Situs w...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: The Chronicles of Narnia: The Voyage of the Dawn Treader lagu tema – berita · surat kabar · buku · cendekiawan · JSTOR The Chronicles of Narnia: The Voyage of the Dawn TreaderAlbum lagu tema kar...

若纳斯·萨文比Jonas Savimbi若纳斯·萨文比,摄于1990年出生(1934-08-03)1934年8月3日 葡屬西非比耶省Munhango(葡萄牙語:Munhango)逝世2002年2月22日(2002歲—02—22)(67歲) 安哥拉莫希科省卢库塞效命 安哥拉民族解放阵线 (1964–1966) 争取安哥拉彻底独立全国联盟 (1966–2002)服役年份1964 – 2002军衔将军参与战争安哥拉独立战争安哥拉內戰 若纳斯·马列罗·萨文比(Jonas Malheiro Savimbi,1...

 

United States packet steamship Exodus 1947 derelict in Haifa in 1952 History Name 1927: Florida (intended) 1927–44, 1945–47: President Warfield 1944–45: USS President Warfield 1947: Exodus 1947 Namesake 1927: S. Davies Warfield 1947: The Exodus Owner 1928–42: Baltimore Steam Packet Co 1942–43: Ministry of War Transport 1943–47: War Shipping Administration 1947: Haganah Operator 1928–42: Baltimore Steam Packet Co 1942–43: Coast Lines, Ltd 1944–45: United States Navy 1947: Mos...

 

List of events ← 1809 1808 1807 1806 1805 1810 in Ireland → 1811 1812 1813 1814 1815 Centuries: 17th 18th 19th 20th 21st Decades: 1790s 1800s 1810s 1820s 1830s See also:1810 in the United KingdomOther events of 1810 List of years in Ireland Events from the year 1810 in Ireland. Events 3 July – Royal Belfast Academical Institution foundation stone laid.[1] Births 3 January – Antoine Thomson d'Abbadie, geographer (died 1897). 10 March – Samuel Ferguson, poet, barrister...

Філософські школи і філософські теорії. Зміст  А Б В Г Ґ Д Е Є Ж З И І Ї Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ю Я Також Зміст 1 А 2 Б 3 В 4 Г 5 Д 6 Е 7 Є 8 З 9 І 10 К 11 Л 12 М 13 Н 14 О 15 П 16 Р 17 С 18 Т 19 У 20 Ф 21 Х 22 Ц 23 Ч 24 Ш 25 Ю 26 Я 27 Див. також Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesП...

 

Lee Min-hyukLee Min-hyuk pada saat acara fansign pada November 2016Lahir29 November 1990 (umur 33)Seoul, Korea SelatanPekerjaanPenyanyi rappenyanyipenulis lagupemeranpembawa acaraKarier musikNama lainHuta[1]GenreK-popTahun aktif2012–sekarangLabelCubeArtis terkaitBtoBBtoB 4UUnited CubeSitus webbtobofficial.comNama KoreaHangul이민혁 Hanja李旼赫[2] Alih AksaraI Min-hyeokMcCune–ReischauerYi Minhyŏk Tanda tangan Lee Min-hyuk (Hangul: 이민혁; lahir 29 No...

 

U.S. Space Force base near Colorado Springs, Colorado, United States Schriever Space Force BaseNear Colorado Springs, Colorado, in the United StatesRadome installations at SchrieverShield of Space Base Delta 1Schriever SFBLocation in the United StatesCoordinates38°48′12″N 104°31′32″W / 38.80333°N 104.52556°W / 38.80333; -104.52556 (Schriever AFB)TypeU.S. Space Force BaseSite informationOwnerDepartment of DefenseOperatorUnited States Space Force...

Ada usul agar Abū al-Wafā' al-Būzjānī digabungkan ke artikel ini. (Diskusikan) Abul Wafa Muhammad Al BuzjaniLahir(940-06-10)10 Juni 940Buzhgan, IranMeninggal997 atau 998BaghdadKebangsaanKekhalifahan AbbasiyahPekerjaanMatematikawan, Astronom, IlmuwanKarya akademisEraZaman Kejayaan IslamKarya terkenalAlmagest Abū al-Wafā'Pemikiran pentingFungsi trigonometrikAturan sinusbeberapa identitas trigonometriMemengaruhiAl-Biruni, Abu Nashr Mansur Abul Wafa Muhammad Ibn Muhammad Ibn Yahya Ibn Isma...

 

2002 local election in England 2002 Southwark Council election ← 1998 2 May 2002 2006 → All council seats   First party Second party Third party   Party Liberal Democrats Labour Conservative Seats won 30 28 5 Seat change 3 5 1 Popular vote 17,068 16,767 5,809 Percentage 38.05% 37.38% 12.95% Swing 3.89 6.12 0.21   Fourth party   Party Green Seats won 0 Seat change Popular vote 3,231 Percentage 7.2% Swing 0.37 Largest Party...

 

Men's normal hill individualat the XXIV Olympic Winter GamesSki jumpingVenueSnow Ruyi, ZhangjiakouDate5–6 FebruaryCompetitors53 from 20 nationsWinning points275.0Medalists Ryōyū Kobayashi  Japan Manuel Fettner  Austria Dawid Kubacki  Poland← 20182026 → Ski jumping at the2022 Winter OlympicsQualification Normal hillmenwomenLarge hillmenTeammenmixedvte The men's normal hill individual competition of the Beijing 2022 Olympics was held on 5–6 ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) خوان بريتو معلومات شخصية الميلاد 7 نوفمبر 1977 (47 سنة)  سانتياغو دي لوس كاباليروس  مواطنة جمهورية الدومينيكان  الحياة العملية المهنة لاعب كرة قاعدة[1 ...

 

Ekspedisi 2 ISSJenis misiEkspedisi ISSDurasi misi163 hari, 8 jam, 13 menit (di ISS)167 hari, 6 jam, 41 menit (meluncur hingga mendarat)[1]Jarak tempuh111.152.720 kilometer (69.067.100 mi)Frekuensi orbit2.635[2] EkspedisiStasiun ruang angkasaInternational Space StationDimulai10 Maret 2001Diakhiri20 Agustus 2001TibaSTS-102Pesawat Ulang Alik DiscoveryBerangkatSTS-105[2]Pesawat Ulang Alik Discovery AwakJumlah awak3AwakYury Usach...