Continuous q-Hahn polynomials In mathematics, the continuous q -Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme . Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010 , 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the q-Pochhammer symbol by [ 1]
p
n
(
x
;
a
,
b
,
c
,
d
|
q
)
=
a
−
n
e
−
i
n
u
(
a
b
e
2
i
u
,
a
c
,
a
d
;
q
)
n
4
ϕ
3
(
q
−
n
,
a
b
c
d
q
n
−
1
,
a
e
i
(
t
+
2
u
)
,
a
e
−
i
t
;
a
b
e
2
i
u
,
a
c
,
a
d
;
q
;
q
)
{\displaystyle p_{n}(x;a,b,c,d|q)=a^{-n}e^{-inu}(abe^{2iu},ac,ad;q)_{n}{}_{4}\phi _{3}(q^{-n},abcdq^{n-1},ae^{i{(t+2u)}},ae^{-it};abe^{2iu},ac,ad;q;q)}
x
=
cos
(
t
+
u
)
{\displaystyle x=\cos(t+u)}
Gallery
CONTINUOUS q hahn ABS COMPLEX3D Maple PLOT
CONTINUOUS q hahn IIM COMPLEX3D Maple PLOT
CONTINUOUS q hahn RE COMPLEX3D Maple PLOT
CONTINUOUS q hahn ABS density Maple PLOT
CONTINUOUS q hahn im density Maple PLOT
CONTINUOUS q hahn RE density Maple PLOT
References
^ Roelof p433, Springer 2010
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Information related to Continuous q-Hahn polynomials