The probability that two uniform random elements of a finite group commute with each other
In mathematics and more precisely in group theory, the commuting probability (also called degree of commutativity or commutativity degree) of a finite group is the probability that two randomly chosen elements commute.[1][2] It can be used to measure how close to abelian a finite group is. It can be generalized to infinite groups equipped with a suitable probability measure,[3] and can also be generalized to other algebraic structures such as rings.[4]
Definition
Let be a finite group. We define as the averaged number of pairs of elements of which commute:
where denotes the cardinality of a finite set .
If one considers the uniform distribution on , is the probability that two randomly chosen elements of commute. That is why is called the commuting probability of .
Results
- The finite group is abelian if and only if .
- One has
- where is the number of conjugacy classes of .
- If is not abelian then (this result is sometimes called the 5/8 theorem[5]) and this upper bound is sharp: there are infinitely many finite groups such that , the smallest one being the dihedral group of order 8.
- There is no uniform lower bound on . In fact, for every positive integer there exists a finite group such that .
- If is not abelian but simple, then (this upper bound is attained by , the alternating group of degree 5).
- The set of commuting probabilities of finite groups is reverse-well-ordered, and the reverse of its order type is known to be either or .[6]
Generalizations
References