Chiral column chromatography

Chiral column chromatography[1][2] is a variant of column chromatography that is employed for the separation of chiral compounds, i.e. enantiomers, in mixtures such as racemates or related compounds. The chiral stationary phase (CSP) is made of a support, usually silica based, on which a chiral reagent or a macromolecule with numerous chiral centers is bonded or immobilized.[3]

The chiral stationary phase can be prepared by attaching a chiral compound to the surface of an achiral support such as silica gel. For example, one class of the most commonly used chiral stationary phases both in liquid chromatography and supercritical fluid chromatography is based on oligosaccharides[4] such as Amylose Cellulose or Cyclodextrin (in particular with β-cyclodextrin, a seven sugar ring molecule) immobilized on silica gel.

The principle can be also applied to the fabrication of Monolithic HPLC columns[5] or Gas Chromatography columns.[6] or Supercritical Fluid Chromatography columns.[7]

Principle of Chiral Column Chromatography

The chiral stationary phase, CSP, can interact differently with two enantiomers, by a process known as chiral recognition. Chiral recognition depends on various interactions such as hydrogen bonding, π-π interaction, dipole stacking, inclusion complexation, steric, hydrophobic and electrostatic interaction, charge-transfer interactions, ionic interactions etc, between the analyte and the CSP, to form in-situ transient-diastereomeric complexes.

Most of the types of stationary phases can be classified as Pirkle type (Brush type),[8][9] Protein-based,[10] Cyclodextrins based,[11] Polymer-based carbohydrates (polysaccharide-based CSPs),[12] Macrocyclic antibiotic,[13] Chiral crown ethers,[14] imprinted polymers,[15] etc.

Brush type columns (Pirkle Type)

The brush type, or Pirkle type chiral stationary phases[16][17] are also called π-π Donnor-Acceptor columns. According to some theoretical models separation on these CSPs is based on a three-point attachment between the solute and the bonded chiral ligand on the surface of the stationary phase. These interactions may be attractive or repulsive in nature, depending on the mutual properties. Pirkle columns discriminate enantiomers by binding of one enantiomer with the chiral stationary phase, thereby forming a diastereomeric complex through π-π bonding, hydrogen bonding, steric interactions, and/or dipole stacking. Pirkle CSP can be categorized into three classes:[18]

(i)                 π-electron acceptor

(ii)               π-electron donor

(iii)             π-electron donor-π-electron acceptor.

Protein-based chiral stationary phases

A protein-based chiral stationary phase is based on silica-gel, on which a protein is immobilized or bonded.[19] The protein is based on many chiral centers, therefore the mechanism of chiral interaction between the protein and the analytes involves many interactions, such as hydrophobic and electrostatic interactions, hydrogen bonding and charge-transfer interactions, which may contribute to chiral recognition. Hydrophobic interactions between the protein and the analyte are affected by percent organic in the mobile phase. As the organic content increases, retention on protein-based columns decreases.

Polysaccharide chiral stationary phases

The naturally occurring polysaccharide form the basis for an important group of columns designed for chiral separation. The main polysaccharides are cellulose, amylose, chitosan, dextran, xylan, curdlan, and inulin.[20] Polysaccharide-based stationary phase have a high loading capacity, many chiral centers and complicated stereochemistry, and can be used for the separation of a wide range of compounds.

Polysaccharide-based chiral stationary phases have a wide application due to their high separation efficiency, selectivity, sensitivity and reproducibility under normal and reversed-phase conditions, as well as their broad applicability for structurally diversified compounds.[21] The mechanism of chiral interaction on the polysaccharide-based chiral stationary phase has not yet been elucidated. However, the following interactions are believed to play a role in the retention:[22]

(i) Hydrogen bonding interactions of the polar chiral analyte with carbamate groups on the CSP;

(ii)  π-π interactions between phenyl groups on the CSP and aromatic groups of the solute;

(i) Dipole-dipole interactions

(ii) Steric interactions due to the helical structure of the CSP.

These effects on the retention process originate also from the functionality of the derivatives of the polysaccharide, its average molecular weight, and size distribution, the solvent used to immobilize it on the macroporous silica support, and the nature of the macroporous silica support itself.

Cyclodextrin (CD) chiral stationary phases

Cyclodextrin (CD) chiral stationary phase is produced by partial degradation of starch by the enzyme cyclodextrin glycosyltransferase, followed by enzymatic coupling of the glucose units, forming a toroidal structure. CDs are cyclic oligosaccharides consisting of six (α CDs), seven (β CDs) and eight (γ CDs) glucopyranose units. The chiral recognition mechanism is based on a sort of inclusion complexation. Complexation involves the interaction of the hydrophobic portion of an analyte enantiomer with the non-polar interior of the cavity, while the polar functional groups can form a hydrogen bond with the polar hydroxyl chiral cavity space. The most important factor that determines whether the analyte molecule will fit into the cyclodextrin cavity is its size. The α-CD consists of 30 stereo-selective centers, β-CD consists of 35 stereo-selective centers and γ-CD consists of 40 stereo-selective centers. When the hydrophobic portion of the analyte is larger or smaller than the toroid's cavity size, inclusion will not occur.

Macrocyclic chiral stationary phases

Macrocyclic chiral stationary phases consist of a silica support, on which macrocyclic antibiotic molecules are bonded.[13] The commonly used macrocyclic antibiotics include rifamycin, glycopeptides (for example, avoparcin, teicoplanin, ristocetin A, vancomycin, and their analogs), polypeptide antibiotic thiostrepton, and aminoglycosides (for example, fradiomycin, kanamycin, and streptomycin). The macrocyclic antibiotics interact with the analyte through hydrogen bonds, dipole-dipole interactions with the polar groups of the analyte, ionic interactions and π-π interactions.

Chiral crown ether

Chiral crown stationary phases consist Crown ethers, immobilized or bonded to the support particles, are polyethers with a macrocyclic structure that can create host-guest complexes with alkali, earth-alkali metal ions, and ammonium cations. The skeleton of the cyclic structure is composed of oxygen and methylene groups arranged alternately. The electron-donating ether oxygens are positioned within the inner wall of the crown cavity, and are encircled by methylene groups in a collar-like arrangement. The chiral recognition is based on two distinct diastereomeric inclusion complexes that can be generated. The primary interactions facilitating complexation involve hydrogen bonds, formed between the three amine hydrogens and the oxygens of the macrocyclic ether, arranged in a tripod configuration. Additionally, ionic interactions, dipole-dipole interactions, or hydrogen bonds can occur between the carbocyclic groups and polar groups of the analytes, providing further support for the complexes.

Method Development

Method development of chiral chromatography is still done by screening of columns from the various classes of chiral columns.[23] While chiral separation mechanisms are understandable in certain scenarios, and the retention characteristics of analytes within the chromatographic columns can occasionally be elucidated, the precise combination of chiral stationary phases (CSPs) and mobile-phase compositions that required to effectively resolve a specific enantiomeric pair often remains elusive.

The chemistry of CSP ligands significantly influences the creation of in-situ diastereomeric complexes upon the stationary phase surface. However, other method's conditions, such as mobile-phase solvents, their composition, mobile phase additives and column temperature can play equally critical roles. The final resolution of the enantiomers is the outcome of combination of intermolecular forces, and even a subtle change in them can determine the success or failure of separation. This complexity prevents from establishing routine method-development protocols that are universally applicable to a diverse range of enantiomers. In fact, sometimes the outcome of previous unsuccessful experiments do not provide any clue for the subsequent steps. Therefore, in practice, a chiral method development laboratory settings, acts like a high-throughput screening protocol,[24] of conducting a systematic screening of various CSP's by advanced column switching devices, trying automatically and systematically various mobile-phase combinations, effectively employing a trial-and-error strategy.[23]

Because of the highly complex retention mechanism of a chiral stationary-phase due to chiral recognition,[17] whose principles have not been deciphered, it is often difficult, if not impossible to predict in advance the steps that can be successfully applied to the enantiomers at hand as part of method development. That's why the standard approach in the method development is high throughput screening, to evaluate or examine a series of stationary phases, using various mobile-phase combinations, to increase the chance of finding a suitable separation condition.[23]

See also

References

 This article incorporates text by Celina Nazareth and Sanelly Pereira available under the CC BY 4.0 license.

  1. ^ Allenmark, Stig; Schurig, Volker (1997). "Chromatography on chiral stationary phases". Journal of Materials Chemistry. 7 (10): 1955–1963. doi:10.1039/A702403G. ISSN 1364-5501.
  2. ^ Teixeira, Joana; Tiritan, Maria Elizabeth; Pinto, Madalena M. M.; Fernandes, Carla (2019). "Chiral Stationary Phases for Liquid Chromatography: Recent Developments". Molecules. 24 (5): 865. doi:10.3390/molecules24050865. ISSN 1420-3049. PMC 6429359. PMID 30823495.
  3. ^ Nazareth, Celina; Pereira, Sanelly (2020). "A Review on Chiral Stationary Phases for Separation of Chiral Drugs" (PDF). International Journal of Pharmaceutical and Phytopharmacological Research. 10 (3): 77–91.
  4. ^ Yashima, Eiji (2001). "Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation". Journal of Chromatography A. Chiral Separations. 906 (1): 105–125. doi:10.1016/S0021-9673(00)00501-X. ISSN 0021-9673. PMID 11215883.
  5. ^ Yingjie Li; Chunhui Song; Lingyi Zhang; Weibing Zhang; Honggang Fu (January 2010). "Fabrication and evaluation of chiral monolithic column modified by β-cyclodextrin derivatives". Talanta. 80 (3): 1378–1384. doi:10.1016/j.talanta.2009.09.039. PMID 20006102.
  6. ^ Yi-Ming Liu; Patricia Gordon; Shelby Green; Jonathan V. Sweedler (September 2000). "Determination of salsolinol enantiomers by gas chromatography-mass spectrometry with cyclodextrin chiral columns". Analytica Chimica Acta. 420 (1): 81–88. doi:10.1016/S0003-2670(00)00986-7.
  7. ^ West, Caroline (2019). "Recent trends in chiral supercritical fluid chromatography". TrAC Trends in Analytical Chemistry. 120: 115648. doi:10.1016/j.trac.2019.115648. ISSN 0165-9936. S2CID 202884037.
  8. ^ Fernandes, Carla; Tiritan, Maria Elizabeth; Pinto, Madalena (2013). "Small Molecules as Chromatographic Tools for HPLC Enantiomeric Resolution: Pirkle-Type Chiral Stationary Phases Evolution". Chromatographia. 76 (15): 871–897. doi:10.1007/s10337-013-2469-8. ISSN 1612-1112. S2CID 97668558.
  9. ^ Tiritan, Maria Elizabeth; Pinto, Madalena; Fernandes, Carla (2023-04-12), Cass, Quezia Bezerra; Tiritan, Maria Elizabeth; Junior, João Marcos Batista; Barreiro, Juliana Cristina (eds.), "Pirkle Type", Chiral Separations and Stereochemical Elucidation (1 ed.), Wiley, pp. 325–362, doi:10.1002/9781119802280.ch9, ISBN 978-1-119-80225-9, retrieved 2023-10-15
  10. ^ Haginaka, Jun (2001). "Protein-based chiral stationary phases for high-performance liquid chromatography enantioseparations". Journal of Chromatography A. Chiral Separations. 906 (1): 253–273. doi:10.1016/S0021-9673(00)00504-5. ISSN 0021-9673. PMID 11215891.
  11. ^ Xiao, Yin; Ng, Siu-Choon; Tan, Timothy Thatt Yang; Wang, Yong (2012). "Recent development of cyclodextrin chiral stationary phases and their applications in chromatography". Journal of Chromatography A. Chiral Separations and Enantioselectivity. 1269: 52–68. doi:10.1016/j.chroma.2012.08.049. ISSN 0021-9673. PMID 22959844.
  12. ^ Geryk, Radim; Kalíková, Květa; Vozka, Jiří; Plecitá, Denisa; Schmid, Martin G.; Tesařová, Eva (2014-10-10). "Enantioselective potential of chiral stationary phases based on immobilized polysaccharides in reversed phase mode". Journal of Chromatography A. Enantioseparations - 2014. 1363: 155–161. doi:10.1016/j.chroma.2014.06.040. ISSN 0021-9673. PMID 24997511.
  13. ^ a b Armstrong, Daniel W.; Tang, Yubing.; Chen, Shushi.; Zhou, Yiwen.; Bagwill, Christina.; Chen, Jing-Ran. (1994). "Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography". Analytical Chemistry. 66 (9): 1473–1484. doi:10.1021/ac00081a019. ISSN 0003-2700.
  14. ^ Li, Yanzhe; Sheng, Zhe; Zhu, Chuanlei; Yin, Wei; Chu, Changhu (2018). "Silica based click-dibenzo-18-crown-6-ether high performance liquid chromatography stationary phase and its application in separation of fullerenes". Talanta. 178: 195–201. doi:10.1016/j.talanta.2017.07.037. ISSN 0039-9140. PMID 29136812.
  15. ^ Pu, Junli; Wang, Hongwei; Huang, Chao; Bo, Chunmiao; Gong, Bolin; Ou, Junjie (2022). "Progress of molecular imprinting technique for enantioseparation of chiral drugs in recent ten years". Journal of Chromatography A. 1668: 462914. doi:10.1016/j.chroma.2022.462914. ISSN 0021-9673. PMID 35220013. S2CID 246980680.
  16. ^ Fernandes, Carla; Tiritan, Maria Elizabeth; Pinto, Madalena (2013-08-01). "Small Molecules as Chromatographic Tools for HPLC Enantiomeric Resolution: Pirkle-Type Chiral Stationary Phases Evolution". Chromatographia. 76 (15): 871–897. doi:10.1007/s10337-013-2469-8. ISSN 1612-1112. S2CID 97668558.
  17. ^ a b Magora, Amir; Abu-Lafi, Saleh; Levin, Shulamit (2000). "Comparison of the enantioseparation of racemic uridine analogs on Whelk-O 1 and ChiralPak-AD columns". Journal of Chromatography A. 866 (2): 183–194. doi:10.1016/S0021-9673(99)01108-5. ISSN 0021-9673. PMID 10670808.
  18. ^ Fernandes, Carla; Phyo, Ye’ Zaw; Silva, Ana Sofia; Tiritan, Maria Elizabeth; Kijjoa, Anake; Pinto, Madalena M.M. (2018-04-03). "Chiral Stationary Phases Based on Small Molecules: An Update of the Last 17 Years". Separation & Purification Reviews. 47 (2): 89–123. doi:10.1080/15422119.2017.1326939. ISSN 1542-2119. S2CID 99405457.
  19. ^ Zhu, Bolin; Xue, Mengyao; Liu, Beibei; Li, Qing; Guo, Xingjie (2019). "Enantioselective separation of eight antihistamines with α1-acid glycoprotein-based chiral stationary phase by HPLC: Development and validation for the enantiomeric quality control". Journal of Pharmaceutical and Biomedical Analysis. 176: 112803. doi:10.1016/j.jpba.2019.112803. ISSN 0731-7085. PMID 31442761. S2CID 201630751.
  20. ^ Aboul-Enein, Hassan Y (2001). "High-performance liquid chromatographic enantioseparation of drugs containing multiple chiral centers on polysaccharide-type chiral stationary phases". Journal of Chromatography A. Chiral Separations. 906 (1): 185–193. doi:10.1016/S0021-9673(00)00950-X. ISSN 0021-9673. PMID 11215887.
  21. ^ Nie, Y.; Liu, X.; Yang, X.; Zhao, Z. (2013). "Review: Recent Application of Chiral Liquid Chromatography-Tandem Mass Spectrometric Methods for Enantiomeric Pharmaceutical and Biomedical Determinations". Journal of Chromatographic Science. 51 (8): 753–763. doi:10.1093/chromsci/bms209. ISSN 0021-9665. PMID 23315149.
  22. ^ Zhao, Binwu; Oroskar, Priyanka A.; Wang, Xiaoyu; House, David; Oroskar, Anil; Oroskar, Asha; Jameson, Cynthia; Murad, Sohail (2017). "The Composition of the Mobile Phase Affects the Dynamic Chiral Recognition of Drug Molecules by the Chiral Stationary Phase". Langmuir. 33 (42): 11246–11256. doi:10.1021/acs.langmuir.7b02337. ISSN 0743-7463. PMID 28826215.
  23. ^ a b c Tarafder, Abhijit; Miller, Larry (2021). "Chiral chromatography method screening strategies: Past, present and future". Journal of Chromatography A. 1638: 461878. doi:10.1016/j.chroma.2021.461878. ISSN 0021-9673. PMID 33477025. S2CID 231677607.
  24. ^ Lin, Jessica; Tsang, Charlotte; Lieu, Raymond; Zhang, Kelly (2020). "Method screening strategies of stereoisomers of compounds with multiple chiral centers and a single chiral center". Journal of Chromatography A. 1624: 461244. doi:10.1016/j.chroma.2020.461244. ISSN 0021-9673. PMID 32540081. S2CID 219700768.

Read other articles:

Geografi Filipina BenuaAsiaKawasanAsia TenggaraWilayahPeringkat ke-72300.000 km² (115.830,6 mil²)99,18% daratan0,82% perairanTitik tertinggiGunung Apo 3.776 mTitik terendahlongest river= largest lake= Filipina adalah kelompok atau gugus pulau-pulau yang berjajar di lepas pantai Indochina, membentuk batas timur laut bagi Malaysia. Kepulauan tropis ini, berbatasan dengan Laut Cina Selatan di sebelah Barat, Samudra Pasifik di sebelah Timur, Laut Sulawesi dan Laut Sulu di Selatan. Ne...

 

Questa voce sugli argomenti Libano e storia contemporanea è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Le proteste in Libano del 2011 si inseriscono nel contesto delle rivolte nel mondo arabo e in altri paesi africani e asiatici in atto dal dicembre del 2010, scatenate da un forte aumento dei prezzi dei generi alimentari, ma anche da altre concause che ineriscono alle condizioni di vita sociali e fi...

 

County in Michigan, United States County in MichiganBerrien CountyCountyLighthouse at St. Joseph SealLocation within the U.S. state of MichiganMichigan's location within the U.S.Coordinates: 41°56′N 86°35′W / 41.94°N 86.59°W / 41.94; -86.59Country United StatesState MichiganFoundedOctober 29, 1829 (created)1831 (organized)[1]Named forJohn M. BerrienSeatSt. JosephLargest cityNilesArea • Total1,581 sq mi (4,090 km2)...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sport Chek – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this template message)Canadian sporting goods retailer Sportchek International 2000 Ltd.The Sport Chek/Atmosphere at West Edmonton Mall in Edmonton, AlbertaTrade ...

 

Final Piala Raja Spanyol 2017TurnamenPiala Raja Spanyol 2016–2017 Barcelona Alavés 3 1 Tanggal27 Mei 2017StadionStadion Vicente Calderón, MadridWasitCarlos Clos GómezPenonton45.000← 2016 2018 → Final Piala Raja Spanyol 2017 adalah pertandingan final ke-113 dari turnamen sepak bola Piala Raja Spanyol untuk menentukan juara musim 2016–2017. Pertandingan ini diikuti oleh Barcelona dan Alavés dan diselenggarakan pada 27 Mei 2017 di Stadion Vicente Calderón, Madrid. Barcelona ...

 

Major League Baseball team season 2018 Texas RangersLeagueAmerican LeagueDivisionWestBallparkGlobe Life Park in ArlingtonCityArlingtonRecord67–95 (.414)Divisional place5thOwnersRay Davis & Bob R. SimpsonManagersJeff Banister (through September 19)Don Wakamatsu (from September 21)TelevisionFox Sports Southwest(Dave Raymond, C.J. Nitkowski, Tom Grieve)RadioKRLD 105.3 FM (English)(Eric Nadel, Matt Hicks, Dave Raymond)KZMP 1540 AM (Spanish)(Eleno Orlenas, Jerry Romo)StatsESPN.comBB-re...

Football clubAtlético GrauFull nameClub Social Deportivo Atlético GrauNickname(s)Los AlbosLos BlancosLos HeroicosLos AcadémicosFoundedJune 5, 1919; 104 years ago (1919-06-05)GroundEstadio Miguel GrauPiuraCapacity25,500ChairmanArturo Ríos IbáñezManagerÁngel ComizzoLeagueLiga 12023Liga 1, 12th of 19WebsiteClub website Home colours Away colours Third colours Club Atlético Grau, more commonly known as Atlético Grau or simply, Grau, is a Peruvian professional football cl...

 

American judge (born 1949) Eric G. BrugginkBruggink in 2017Senior Judge of the United States Court of Federal ClaimsIncumbentAssumed office April 16, 2001Judge of the United States Court of Federal ClaimsIn officeApril 16, 1986 – April 16, 2001Appointed byRonald ReaganPreceded byHarry E. WoodSucceeded byLawrence J. Block Personal detailsBorn (1949-09-11) September 11, 1949 (age 74)Kalidjati, IndonesiaAlma materAuburn University (B.A., M.A.)University of Alabama (J.D.) Eric...

 

Life Can Be BeautifulThe cast in 1940 from left: Ralph Locke (Papa David Solomon), Mitzi Gould (Rita), John Holbrook (Stephen Hamilton), Alice Reinhardt (Chichi Conrad)GenreSoap operaCountry of originUnited StatesLanguage(s)EnglishSyndicatesCBSStarringAlice ReinheartRalph LockeJohn HolbrookCarl EastmanMitzi GouldAnnouncerRalph EdwardsEd HerlihyCreated byDon BeckerCarl BixbyWritten byDon BeckerCarl BixbyOriginal releaseSeptember 5, 1938 –June 25, 1954Opening themeMelody in CSponsored by...

Yongle Tongbao(永樂通寶)Dinasti Ming(Tiongkok)[a]Nilai1 wénKomposisi63-90% tembaga (Cu), 10-25% timbal (Pb), 6-9% timah (Sn), and 0.04-0.18 % seng (Zn).[1]Silver[b]Tahun pencetakan1408–1424[2]DepanDesainYongle Tongbao (永樂通寶)BelakangDesainBiasanya kosong, tetapi inskripsi dapat digunakan.[3][4][5] Yongle Tongbao (Hanzi sederhana: 永乐通宝; Hanzi tradisional: 永樂通寳; Pinyin: yǒnglè tōng bǎo; ba...

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Cet article concerne le film. Pour le roman, voir Harry Potter et le Prisonnier d'Azkaban. Pour le jeu vidéo, voir Harry Potter et le Prisonnier d'Azkaban. Harry Potteret le Prisonnier d'Azkaban Données clés Titre original Harry Potter and the Prisoner of Azkaban Réalisation Alfonso Cuarón Scénario Steve Kloves Musique John Williams Acteurs principaux Daniel RadcliffeRupert GrintEmma WatsonGary OldmanDavid Thewlis Sociétés de production Warner Bros. PicturesHeyday Films1492 Pictu...

1951 film Lightning Strikes TwiceTheatrical release posterDirected byKing VidorScreenplay byLenore J. CoffeeBased onA Man Without Friends1940 novelby Margaret EchardProduced byHenry BlankeStarringRichard ToddRuth RomanMercedes McCambridgeCinematographySidney HickoxEdited byThomas ReillyMusic byMax SteinerColor processBlack and whiteProductioncompanyWarner Bros.Distributed byWarner Bros.Release date April 12, 1951 (1951-04-12) Running time91 minutesCountryUnited StatesLanguageEn...

 

Не слід плутати з Еміграцією.У Вікіпедії є статті про інші значення цього терміна: Імміграція (ембріологія). Європейські іммігранти, які прибувають до Аргентини Різноманіття етнічних груп у Лондоні (2006) Іммігра́ція (лат. immigro — «вселяюся», «в'їжджаю») — в'їзд громадя�...

 

Pour le Burger King de Mattoon, voir Burger King de Mattoon. Burger King Logo utilisé depuis 2020 Siège social de Burger King à Miami, en Floride, aux États-Unis. Création 4 décembre 1954 (69 ans), Miami, Floride, États-Unis Dates clés 2002 : Goldman Sachs, TGP Capital et Bain Capital achètent Burger King au groupe britannique Diageo. Burger King quitte la bourse. 2006 : Burger King est réintroduit en Bourse 2010 : Le fond financier 3G Capital achète Burger Kin...

English physician (1624–1689) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Thomas Sydenham – news · newspapers · books · scholar · JSTOR (January 2010) (Learn how and when to remove this message) Thomas SydenhamThomas Sydenham in a 1689 portrait by Mary Beale.Born(1624-09-10)10 September 1624Wynford Eag...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bareilly district – news · newspapers · books · scholar · JSTOR (April 2017) (Learn how and when to remove this message) District of Uttar Pradesh in IndiaBareilly districtDistrict of Uttar PradeshClockwise from top-left: Ahichchhatra Jain temples, shrine of Im...

 

Solicitor David PascoeSolicitor for the First Judicial Circuit of South CarolinaIncumbentAssumed office January 2005Preceded byWalter Bailey Personal detailsBorn (1967-03-02) March 2, 1967 (age 57)Charlottesville, Virginia, U.S.Political partyDemocraticChildren3EducationThe Citadel (BA)University of South Carolina (JD)OccupationFirst Circuit Solicitor David Michael Pascoe (born March 2, 1967) is an American lawyer serving as the First Circuit Solicitor in the state of South Carolina ...

Provinsi Ha'il مِنْطَقَة حَائِلEmirat/ProvinsiGurun lanskap berbukit dekat Pegunungan ShammarPeta Arab Saudi dengan Ha'il disorotIbu kotaHa'ilJumlah satuan pemerintahan9Pemerintahan • GubernurAbdulaziz bin Saad Al SaudLuas • Total103.887 km2 (40,111 sq mi)Populasi (2017) • Total699.774 • Kepadatan6,7/km2 (17/sq mi) Ha'il (bahasa Arab: حائل) ialah sebuah provinsi di Arab Saudi, terletak di utara negeri....

 

Delphinidin Names IUPAC name 3,3′,4′,5,5′,7-Hexahydroxyflavylium Systematic IUPAC name 3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)-1λ4-1-benzopyran-1-ylium Identifiers CAS Number 13270-61-6 Y528-53-0 (chloride) Y 3D model (JSmol) Interactive image ChEBI CHEBI:28436 N ChEMBL ChEMBL590878 YChEMBL276780 N ChemSpider 114185 N ECHA InfoCard 100.007.671 E number E163b (colours) KEGG C05908 Y PubChem CID 68245 UNII 031A4BN94T YEM6MD4AEHE (chl...