Chemical looping combustion

Fig 1. Diagram of CLC reactor system
Fig 2. (Left) Dual fluidized bed design, the Darmstadt chemical looping combustion pilot plant[1] and (Right) interconnected moving bed-fluidized bed design, the Ohio State University Coal Direct Chemical Looping pilot plant[2]

Chemical looping combustion (CLC) is a technological process typically employing a dual fluidized bed system. CLC operated with an interconnected moving bed with a fluidized bed system, has also been employed as a technology process. In CLC, a metal oxide is employed as a bed material providing the oxygen for combustion in the fuel reactor. The reduced metal is then transferred to the second bed (air reactor) and re-oxidized before being reintroduced back to the fuel reactor completing the loop. Fig 1 shows a simplified diagram of the CLC process. Fig 2 shows an example of a dual fluidized bed circulating reactor system and a moving bed-fluidized bed circulating reactor system.

Isolation of the fuel from air simplifies the number of chemical reactions in combustion. Employing oxygen without nitrogen and the trace gases found in air eliminates the primary source for the formation of nitrogen oxide (NOx), produces a flue gas composed primarily of carbon dioxide and water vapor; other trace pollutants depend on the fuel selected.

Description

Chemical looping combustion (CLC) uses two or more reactions to perform the oxidation of hydrocarbon-based fuels. In its simplest form, an oxygen-carrying species (normally a metal) is first oxidized in the air forming an oxide. This oxide is then reduced using a hydrocarbon as a reducer in a second reaction. As an example, an iron based system burning pure carbon would involve the two redox reactions:

If (1) and (2) are added together, the reaction set reduces to straight carbon oxidation i.e.:

CLC was first studied as a way to produce CO2 from fossil fuels, using two interconnected fluidized beds.[3] Later it was proposed as a system for increasing power station efficiency.[4] The gain in efficiency is possible due to the enhanced reversibility of the two redox reactions; in traditional single stage combustion, the release of a fuel's energy occurs in a highly irreversible manner - departing considerably from equilibrium. In CLC, if an appropriate oxygen carrier is chosen, both redox reactions can be made to occur almost reversibly and at relatively low temperatures. Theoretically, this allows a power station using CLC to approach the ideal work output for an internal combustion engine without exposing components to excessive working temperatures.

Thermodynamics

Fig 3. Sankey diagram of energy fluxes in a reversible CLC system.

Fig 3 illustrates the energy exchanges in a CLC system graphically and shows a Sankey diagram of the energy fluxes occurring in a reversible CLC based engine. Studying Fig 1, a heat engine is arranged to receive heat at high temperatures from the exothermic oxidation reaction. After converting part of this energy to work, the heat engine rejects the remaining energy as heat. Almost all of this heat rejection can be absorbed by the endothermic reduction reaction occurring in the reducer. This arrangement requires the redox reactions to be exothermic and endothermic respectively, but this is normally the case for most metals.[5] Some additional heat exchange with the environment is required to satisfy the second law; theoretically, for a reversible process, the heat exchange is related to the standard state entropy change, ΔSo, of the primary hydrocarbon oxidation reaction as follows:

Qo = ToΔSo

However, for most hydrocarbons, ΔSo is a small value and, as a result, an engine of high overall efficiency is theoretically possible.[6]

CO2 capture

Although proposed as a means of increasing efficiency, in recent years, interest has been shown in CLC as a carbon capture technique.[7][8] Carbon capture is facilitated by CLC because the two redox reactions generate two intrinsically separated flue gas streams: a stream from the air reactor, consisting of atmospheric N
2
and residual O
2
, but sensibly free of CO2; and a stream from the fuel reactor predominately containing CO2 and H
2
O
with very little diluent nitrogen. The air reactor flue gas can be discharged to the atmosphere causing minimal CO2 pollution. The reducer exit gas contains almost all of the CO2 generated by the system and CLC therefore can be said to exhibit 'inherent carbon capture', as water vapor can easily be removed from the second flue gas via condensation, leading to a stream of almost pure CO2. This gives CLC clear benefits when compared with competing carbon capture technologies, as the latter generally involve a significant energy penalty associated with either post combustion scrubbing systems or the work input required for air separation plants. This has led to CLC being proposed as an energy efficient carbon capture technology,[9][10] able to capture nearly all of the CO2, for example, from a Coal Direct Chemical Looping (CDCL) plant.[11][12] A continuous 200-hour demonstration results of a 25 kWth CDCL sub-pilot unit indicated nearly 100% coal conversion to CO2 with no carbon carryover to the air reactor.[13][14]

Technology development

First operation of chemical-looping combustion with gaseous fuels was demonstrated in 2003,[15] and later with solid fuels in 2006.[16] Total operational experience in 34 pilots of 0.3 to 3 MW is more than 9000 h.[17][18][19] Oxygen carrier materials used in operation include monometallic oxides of nickel, copper, manganese and iron, as well as various combined oxides including manganese oxides.combined with calcium, iron and silica. Also natural ores have been in use, especially for solid fuels, including iron ores, manganese ores and ilmenite.

Cost and energy penalty

A detailed technology assessment of chemical-looping combustion of solid fuel, i.e. coal, for a 1000 MWth power plant shows that the added CLC reactor costs as compared to a normal circulating fluidized bed boiler are small, because of the similarities of the technologies. Major costs are instead CO2 compression, needed in all CO2 capture technologies, and oxygen production. Molecular oxygen production may also be needed in certain CLC configuration for polishing the product gas from the fuel reactor. In all the added costs were estimated to 20 €/tonne of CO2 whereas the energy penalty was 4%.[20]

A variant of CLC is Chemical-Looping Combustion with Oxygen Uncoupling (CLOU) where an oxygen carrier is used that releases gas-phase oxygen in the fuel reactor, e.g. CuO/Cu
2
O.[21] This is helpful for achieving high gas conversion, and especially when using solid fuels, where slow steam gasification of char can be avoided. CLOU operation with solid fuels shows high performance[22][23]

Chemical Looping can also be used to produce hydrogen in Chemical-Looping Reforming (CLR) processes.[24][25] In one configuration of the CLR process, hydrogen is produced from coal and/or natural gas using a moving bed fuel reactor integrated with a steam reactor and a fluidized bed air reactor. This configuration of CLR can produce greater than 99% purity H2 without the need for CO2 separation.[19][26]

Comprehensive overviews of the field are given in recent reviews on chemical looping technologies.[7][27][28]

In summary, CLC can achieve both an increase in power station efficiency simultaneously with low energy penalty carbon capture. Challenges with CLC include the operation of dual fluidized bed (maintaining carrier fluidization while avoiding crushing and attrition[29]), and maintaining carrier stability over many cycles.

See also

References

  1. ^ Ströhle, Jochen; Orth, Matthias; Epple, Bernd (January 2014). "Design and operation of a 1MWth chemical looping plant". Applied Energy. 113: 1490–1495. doi:10.1016/j.apenergy.2013.09.008. ISSN 0306-2619.
  2. ^ Liang-Shih, Fan. Chemical looping partial oxidation : gasification, reforming, and chemical syntheses. Cambridge. ISBN 9781108157841. OCLC 1011516037.
  3. ^ Lewis, W., Gilliland, E. and Sweeney, M. (1951). "Gasification of carbon". Chemical Engineering Progress. 47: 251–256.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Richter, H.J.; Knoche, K.F. (1983). "Reversibility of combustion processes, in Efficiency and Costing – Second law analysis of processes". ACS symposium series (235): 71–85. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ Jerndal, E., Mattisson, T. and Lyngfelt, A. (2006). "Thermal analysis of chemical-looping combustion". Chemical Engineering Research and Design. 84 (9): 795–806. doi:10.1205/cherd05020.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ McGlashan, N.R. (2008). "Chemical looping combustion – a thermodynamic study". Proc. Inst. Mech. Eng. C. 222 (6): 1005–1019. CiteSeerX 10.1.1.482.5166. doi:10.1243/09544062JMES790. S2CID 14865943.
  7. ^ a b Liang-Shih., Fan (2010). Chemical looping systems for fossil energy conversions. Hoboken, NJ: Wiley-AIChE. ISBN 9780470872888. OCLC 663464865.
  8. ^ Fan, Liang-Shih; Zeng, Liang; Wang, William; Luo, Siwei (2012). "Chemical looping processes for CO2 capture and carbonaceous fuel conversion – prospect and opportunity". Energy & Environmental Science. 5 (6): 7254. doi:10.1039/c2ee03198a. ISSN 1754-5692.
  9. ^ Ishida, M.; Jin, H. (1997). "CO2 Recovery in a power plant with chemical looping combustion". Energy Conv. MGMT. 38: S187 – S192. doi:10.1016/S0196-8904(96)00267-1.
  10. ^ Brandvoll, Ø.; Bolland, O. (2004). "Inherent CO2 Capture Using Chemical Looping Combustion in a Natural Gas Fired Power Cycle". Journal of Engineering for Gas Turbines and Power. 126 (2): 316–321. doi:10.1115/1.1615251.
  11. ^ Gorder, Pam (February 5, 2013). "New Coal Technology Harnesses Energy Without Burning, Nears Pilot-Scale Development". researchnews.osu.edu. Archived from the original on December 21, 2016. Retrieved 2016-11-04.
  12. ^ Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Chung, Elena; Kathe, Mandar; Wang, Dawei; Zeng, Liang; Fan, Liang-Shih (May 2015). "Parametric and dynamic studies of an iron-based 25-kW th coal direct chemical looping unit using sub-bituminous coal". Applied Energy. 145: 354–363. doi:10.1016/j.apenergy.2015.02.026. ISSN 0306-2619.
  13. ^ Bayham, Samuel C.; Kim, Hyung R.; Wang, Dawei; Tong, Andrew; Zeng, Liang; McGiveron, Omar; Kathe, Mandar V.; Chung, Elena; Wang, William (2013-03-08). "Iron-Based Coal Direct Chemical Looping Combustion Process: 200-h Continuous Operation of a 25-kWth Subpilot Unit". Energy & Fuels. 27 (3): 1347–1356. doi:10.1021/ef400010s. ISSN 0887-0624.
  14. ^ Chung, Cheng; Pottimurthy, Yaswanth; Xu, Mingyuan; Hsieh, Tien-Lin; Xu, Dikai; Zhang, Yitao; Chen, Yu-Yen; He, Pengfei; Pickarts, Marshall (December 2017). "Fate of sulfur in coal-direct chemical looping systems". Applied Energy. 208: 678–690. doi:10.1016/j.apenergy.2017.09.079. ISSN 0306-2619.
  15. ^ Lyngfelt, A. (2004). "A New Combustion Technology". Greenhouse Gas Issues. 73: 2–3.
  16. ^ Lyngfelt, A. (2007). "Chemical-looping combustion of solid fuels". Greenhouse Gas Issues. 85: 9–10.
  17. ^ Lyngfelt, A. (2011). "Oxygen carriers for chemical-looping combustion - 4000 h of operational experience". Oil & Gas Science and Technology. 66 (2): 161–172. doi:10.2516/ogst/2010038.
  18. ^ Lyngfelt, A; Linderholm, C. "Chemical-Looping Combustion of Solid Fuels – status and recent progress". 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14–18 November 2016, Lausanne, Switzerland.
  19. ^ a b Tong, Andrew; Bayham, Samuel; Kathe, Mandar V.; Zeng, Liang; Luo, Siwei; Fan, Liang-Shih (January 2014). "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University". Applied Energy. 113: 1836–1845. doi:10.1016/j.apenergy.2013.05.024. ISSN 0306-2619.
  20. ^ Lyngfelt, Anders; Leckner, Bo (2015-11-01). "A 1000 MWth boiler for chemical-looping combustion of solid fuels – Discussion of design and costs". Applied Energy. 157: 475–487. doi:10.1016/j.apenergy.2015.04.057.
  21. ^ Mattisson, T., Lyngfelt, A. and Leion, H. (2009). "Chemical-Looping with Oxygen Uncoupling for Combustion of Solid Fuels". International Journal of Greenhouse Gas Control. 3: 11–19. doi:10.1016/j.ijggc.2008.06.002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. ^ Abad, A., Adánez-Rubio, I. Gayán, P. García-Labiano, F. de Diego L. F. and Adánez, J. (2012). "Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5kW th continuously operating unit using a Cu-based oxygen-carrier". International Journal of Greenhouse Gas Control. 6: 189–200. doi:10.1016/j.ijggc.2011.10.016. hdl:10261/75134.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. ^ Zhou, Zhiquan; Han, Lu; Nordness, Oscar; Bollas, George M. (2015-05-01). "Continuous regime of chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) reactivity of CuO oxygen carriers". Applied Catalysis B: Environmental. 166–167: 132–144. doi:10.1016/j.apcatb.2014.10.067.
  24. ^ Rydén, M.; Lyngfelt, A. (2006). "Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion". Journal of Hydrogen Energy. 31 (10): 1631–1641. doi:10.1016/j.ijhydene.2005.12.003.
  25. ^ Rydén, M.; Lyngfelt, A. & Mattisson, T. (2006). "Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor". Fuel. 85 (12–13): 1631–1641. doi:10.1016/j.fuel.2006.02.004.
  26. ^ Tong, Andrew; Sridhar, Deepak; Sun, Zhenchao; Kim, Hyung R.; Zeng, Liang; Wang, Fei; Wang, Dawei; Kathe, Mandar V.; Luo, Siwei (January 2013). "Continuous high purity hydrogen generation from a syngas chemical looping 25kWth sub-pilot unit with 100% carbon capture". Fuel. 103: 495–505. doi:10.1016/j.fuel.2012.06.088. ISSN 0016-2361.
  27. ^ Lyngfelt, A. and Mattisson, T. (2011) ”Materials for chemical-looping combustion”, in D. Stolten and V. Scherer, Efficient Carbon Capture for Coal Power Plants, Weinheim, WILEY-VCH Verlag GmbH & Co.. KGaA, 475-504.
  28. ^ Adánez, J.; Abad, A. Garcia-Labiano; F. Gayan P. & de Diego, L. (2012). "Progress in Chemical-Looping Combustion and Reforming technologies'". Progress in Energy and Combustion Science. 38 (2): 215–282. doi:10.1016/j.pecs.2011.09.001. hdl:10261/78793.
  29. ^ Kim, J.Y., Ellis, N., Lim, C.J. and Grace, J.R. (2019). "Attrition of Binary Mixtures of Solids in a Jet Attrition Unit". Powder Technology. 352: 445–452. doi:10.1016/j.powtec.2019.05.010. S2CID 164585879.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Read other articles:

Artikel ini bukan mengenai Putri Pariwisata Indonesia. Puteri Indonesia PariwisataDiberikan kepadaPemenang ketiga kontes Puteri IndonesiaNegaraIndonesiaDipersembahkan olehYayasan Puteri IndonesiaDiberikan perdana1995Pemegang gelar saat iniNi Ketut Permata Juliastrid Sari BaliIkhtisarPemegang terbanyakDKI Jakarta, Bali (3)Situs webwww.puteri-indonesia.com Puteri Indonesia Pariwisata (kadang disingkat PI Pariwisata) adalah gelar yang sejak 2006 diberikan kepada pemenang ketiga (runner-up 2...

 

Queen of Crete in Greek mythology For the moon of Jupiter, see Pasiphae (moon). Not to be confused with Pasithea. PasiphaëSorceress goddessPasiphaë sits on a throne, a Roman mosaic from Zeugma Mosaic MuseumAbodeCretePersonal informationParentsHelios and Perse or CreteSiblingsCirce, Aeetes, Aloeus, Perses, Phaethon, the Heliades, the Heliadae and othersConsortMinos, Cretan BullChildrenAcacallis, Ariadne, Androgeus, Glaucus, Deucalion, Phaedra, Xenodice, Catreus and the Minotaur. Part of a se...

 

2014 United States House of Representatives elections in North Carolina ← 2012 November 4, 2014 (2014-11-04) 2016 → All 13 North Carolina seats in the United States House of Representatives   Majority party Minority party   Party Republican Democratic Last election 9 4 Seats won 10 3 Seat change 1 1 Popular vote 1,555,364 1,234,027 Percentage 55.39% 43.95% Swing 6.64% 6.65% Republican   50–60%   60–70%...

Artikel ini bukan mengenai Mesias. Messiah (HWV 56) adalah judul oratorio karya George Frideric Handel yang digubah pada tahun 1741.[1] Judul oratorio atau karya musik untuk orkestra, solo, dan paduan suara ini diambil dari konsep Yudaisme dan Kristen tentang Mesias. Dalam Kekristenan, Yesus disebut sebagai Sang Mesias. Handel sendiri beragama Kristen, dan oratorio tersebut didasarkan pada kisah Alkitab mengenai karya Yesus di dunia sebagai Sang Mesias atau Juru Selamat menurut konsep...

 

Woollen fabric with a woven twill design of small and large checksGlen Check redirects here. For the South-Korean indie band, see Glen Check (band). Glen plaid fabric Glen plaid (short for Glen Urquhart plaid), also known as Glenurquhart check or Prince of Wales check, is a woollen fabric with a woven twill design of small and large checks.[1] It is usually made of black/grey and white, or with more muted colours, particularly with two dark and two light stripes alternating with four ...

 

Oxide mineral composed of titanium dioxide RutileGeneralCategoryOxide mineralsFormula(repeating unit)TiO2IMA symbolRt[1]Strunz classification4.DB.05Crystal systemTetragonalCrystal classDitetragonal dipyramidal (4/mmm) H-M symbol: (4/m 2/m 2/m)Space groupP42/mnmUnit cella = 4.5937 Å, c = 2.9587 Å; Z = 2IdentificationColorBrown, reddish brown, blood red, red, brownish yellow, pale yellow, yellow, pale blue, violet, rarely grass-green, grayish black; black if high i...

Table tennis at the 1994 Asian GamesVenueAsakita Ward Sports CenterDates5–14 October 1994← 19901998 → Table tennis was contested at the 1994 Asian Games in Asakita Ward Sports Center, Hiroshima, Japan from 5 October 1994 to 14 October 1994. Table tennis had team, doubles and singles events for men and women, as well as a mixed doubles competition. Medalists Event Gold Silver Bronze Men's singles Wang Tao China Yoo Nam-kyu South Korea Kim Taek-soo S...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Percy Williams Bridgman BiografiKelahiran21 April 1882 Cambridge, Massachusetts Kematian20 Agustus 1961 (79 tahun)Randolph Data pribadiAgamaAteisme PendidikanUniversitas Harvard Newton North High School KegiatanPenasihat doktoralWallace Clement Sabine SpesialisasiFisika Pekerjaanfisikawan, dosen Bekerja diUniversitas Harvard MuridJulius Robert Oppenheimer Karya kreatifMurid doktoralEdwin C. Kemble dan John C. Slater KeluargaPasangan nikahOlive Ware Penghargaan(1951)  Bingham Medal(19...

 

mécanique des fluides En mécanique des fluides, le principe de conservation de la masse peut être décrit par l'équation de continuité sous plusieurs formes différentes : locale conservative (dérivée en temps normale), locale non conservative (la dérivée en temps suit la particule dans son mouvement), ou intégrale. Suivant les problèmes posés, c'est l'une ou l'autre de ces équations qui pourra être retenue, toutes étant équivalentes. On note ici : ρ = ρ...

 

التهاب كبدي فيروسي صورة مجهرية تظهر الإصابة بالتهاب الكبد بصورة مجهرية تظهر الإصابة بالتهاب الكبد ب معلومات عامة الاختصاص أمراض معدية،  وطب الجهاز الهضمي  من أنواع التهاب كبدي،  ومرض فيروسي،  ومرض  تعديل مصدري - تعديل   فيديو توضيحي التهاب الكبد الفيروسي هو...

خالد نجم (ممثل)   معلومات شخصية الميلاد 14 ديسمبر 1982 (42 سنة)  مواطنة الأردن  إخوة وأخوات وائل نجم،  ونضال نجم  منصب مزيون الدراما البدوية[1] الحياة العملية المهنة ممثل  المواقع السينما.كوم صفحته على السينما.كوم  تعديل مصدري - تعديل   خالد نجم (14 ديسمبر 1982)...

 

For related races, see 2016 United States Senate elections. 2016 United States Senate election in Wisconsin ← 2010 November 8, 2016 2022 → Turnout67.34%   Nominee Ron Johnson Russ Feingold Party Republican Democratic Popular vote 1,479,471 1,380,335 Percentage 50.17% 46.81% County resultsCongressional district resultsJohnson:      40–50%      50–60%      60–70%    &...

 

Motor vehicle built by Sinclair-Scott in Maryland, United States (1907–1910) Motor vehicle Maryland1906 Ariel; early Maryland touring cars were technically identical to this.OverviewManufacturerSinclair-Scott CompanyProduction1907-1910AssemblyBaltimore, MarylandBody and chassisBody styleRoadsterTouring carLimousine (from 1908)Town car (from 1909)LayoutFront-engine, rear-wheel driveRelated1905-1907 ArielPowertrainEngineOverhead camshaft inline-four engineDimensionsWheelbase2,794.0 ...

Private university in Cebu City, Philippines Not to be confused with Cebu Technological University. Cebu Institute of Technology – UniversityCIT-U Tops Again!Former namesCebu Institute of Technology (CIT) (1946–2010)MottoVirtus in Scientia et Tecnologia (Latin)Motto in EnglishVirtue in Science and TechnologyUniversity HymnAll Hail, Maroon and Gold!TypePrivate, nonsectarian, research, co-educational basic and higher education institutionEstablished1946; 78 years ago ...

 

AARP ワシントンにある本部標語 現実の可能性前身 アメリカ退職教員協会納税者番号 95-1985500[1]本部 ワシントンD.C.、アメリカ合衆国会員数 37,000,000+最高責任者 ジョー・アン・ジェンキンス[1]社長 エリック・J・シュナイデウィンド会長 ジョン・R・ラフ 下部組織 AARP財団;AARP 協会;年輩者のための法律相談;AARP 知識団体;AARP 保険プラン;AARP 財政サービス会社;AA...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Patrick Helmes Informasi pribadiTanggal lahir 1 Maret 1984 (umur 40)Tempat lahir Cologne, Jerman BaratTinggi 1,82 m (5 ft 11+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini 1. FC KölnNomor 10Karier junior1989–19...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) سومان راو معلومات شخصية الميلاد 23 نوفمبر 1998 (26 سنة)  مواطنة الهند  الحياة العملية المهنة متسابقة ملكة الجمال،  وعارضة  تعديل مصدري - تعديل   سومان ...

 

American politician from North Carolina Grey MillsMember of the North Carolina House of Representativesfrom the 95th districtIncumbentAssumed office January 1, 2021Preceded byJohn FraleyIn officeJanuary 1, 2009 – January 1, 2013Preceded byKaren RaySucceeded byRobert Brawley Personal detailsBornPaul Grey Mills Jr.Iredell County, North Carolina, U.S.Political partyRepublicanSpouseJennifer[1]Children3EducationAppalachian State University (BS)Regent University (...