Chasles' theorem (kinematics)

A screw axis. Mozzi–Chasles' theorem says that every Euclidean motion is a screw displacement along some screw axis.

In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a translation along a line (called its screw axis or Mozzi axis) followed (or preceded) by a rotation about an axis parallel to that line.[1][2][3] Such a composition of translation and rotation is called a screw displacement.

History

The proof that a spatial displacement can be decomposed into a rotation and slide around and along a line is attributed to the astronomer and mathematician Giulio Mozzi (1763), in fact the screw axis is traditionally called asse di Mozzi in Italy. However, most textbooks refer to a subsequent similar work by Michel Chasles dating from 1830.[4] Several other contemporaries of M. Chasles obtained the same or similar results around that time, including G. Giorgini, Cauchy, Poinsot, Poisson and Rodrigues. An account of the 1763 proof by Giulio Mozzi and some of its history can be found here.[5][6]

Proof

Mozzi considers a rigid body undergoing first a rotation about an axis passing through the center of mass and then a translation of displacement D in an arbitrary direction. Any rigid motion can be accomplished in this way due to a theorem by Euler on the existence of an axis of rotation. The displacement D of the center of mass can be decomposed into components parallel and perpendicular to the axis. The perpendicular (and parallel) component acts on all points of the rigid body but Mozzi shows that for some points the previous rotation acted exactly with an opposite displacement, so those points are translated parallel to the axis of rotation. These points lie on the Mozzi axis through which the rigid motion can be accomplished through a screw motion.

Another elementary proof of Mozzi–Chasles' theorem was given by E. T. Whittaker in 1904.[7] Suppose A is to be transformed into B. Whittaker suggests that line AK be selected parallel to the axis of the given rotation, with K the foot of a perpendicular from B. The appropriate screw displacement is about an axis parallel to AK such that K is moved to B. The method corresponds to Euclidean plane isometry where a composition of rotation and translation can be replaced by rotation about an appropriate center. In Whittaker's terms, "A rotation about any axis is equivalent to a rotation through the same angle about any axis parallel to it, together with a simple translation in a direction perpendicular to the axis."

Calculation

The calculation of the commuting translation and rotation from a screw motion can be performed using 3DPGA (), the geometric algebra of 3D Euclidean space.[8] It has three Euclidean basis vectors satisfying representing orthogonal planes through the origin, and one Grassmanian basis vector satisfying to represent the plane at infinity. Any plane a distance from the origin can then be formed as a linear combination which is normalized such that . Because reflections can be represented by the plane in which the reflection occurs, the product of two planes and is the bireflection . The result is a rotation around their intersection line , which could also lie on the plane at infinity when the two reflections are parallel, in which case the bireflection is a translation.

A screw motion is the product of four non-collinear reflections, and thus . But according to the Mozzi-Chasles' theorem a screw motion can be decomposed into a commuting translation where is the axis of translation satisfying , and rotationwhere is the axis of rotation satisfying . The two bivector lines and are orthogonal and commuting. To find and from , we simply write out and consider the result grade-by-grade:Because the quadvector part and , is directly found to be[9]and thusThus, for a given screw motion the commuting translation and rotation can be found using the two formulae above, after which the lines and are found to be proportional to and respectively.

Other dimensions and fields

The Chasles' theorem is a special case of the Invariant decomposition.

References

  1. ^ Kumar, V. "MEAM 520 notes: The theorems of Euler and Chasles" (PDF). University of Pennsylvania. Archived from the original (PDF) on 19 June 2018. Retrieved 6 August 2014.
  2. ^ Heard, William B. (2006). Rigid Body Mechanics. Wiley. p. 42. ISBN 3-527-40620-4.
  3. ^ Joseph, Toby (2020). "An Alternative Proof of Euler's Rotation Theorem". The Mathematical Intelligencer. 42 (4): 44–49. arXiv:2008.05378. doi:10.1007/s00283-020-09991-z. ISSN 0343-6993. S2CID 221103695.
  4. ^ Chasles, M. (1830). "Note sur les propriétés générales du système de deux corps semblables entr'eux". Bulletin des Sciences Mathématiques, Astronomiques, Physiques et Chemiques (in French). 14: 321–326.
  5. ^ Mozzi, Giulio (1763). Discorso matematico sopra il rotamento momentaneo dei corpi (in Italian). Napoli: Stamperia di Donato Campo.
  6. ^ Ceccarelli, Marco (2000). "Screw axis defined by Giulio Mozzi in 1763 and early studies on helicoidal motion". Mechanism and Machine Theory. 35 (6): 761–770. doi:10.1016/S0094-114X(99)00046-4.
  7. ^ E. T. Whittaker (1904) E. T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. p. 4.
  8. ^ Gunn, Charles (2011-12-19). Geometry, Kinematics, and Rigid Body Mechanics in Cayley-Klein Geometries (Master's thesis). Technische Universität Berlin, Technische Universität Berlin, Ulrich Pinkall. doi:10.14279/DEPOSITONCE-3058.
  9. ^ Roelfs, Martin; De Keninck, Steven. "Graded Symmetry Groups: Plane and Simple".

Further reading

Read other articles:

Autauga County, AlabamaLokasi di negara bagian AlabamaLokasi negara bagian Alabama di Amerika SerikatDidirikan21 November, 1818SeatPrattvilleKota terbesarPrattvilleWilayah • Keseluruhan604 sq mi (1.564 km2) • Daratan596 sq mi (1.544 km2) • Perairan8 sq mi (21 km2), 1.40%Populasi • (2000)43.671 • Kepadatan72/sq mi (27/km²)Zona waktuTengah: UTC-6 (CST) / -5 (CDT) Autauga merupakan sebu...

 

 

Austrian geographer Hans Kinzl (1899–1979) was an Austrian geographer and mountain researcher. The plaza of Chacas. Photo taken by Hans Kinzl during his stay in Ancash, Peru in 1928. Life Hans Kinzl was born in Upper Austria in 1899. After his studies of geography at the University of Innsbruck he became assistant of his mentor Johann Sölch—disciple of Albrecht Penck—in Innsbruck. He then followed Sölch—who succeeded Alfred Hettner in Heidelberg—but returned to the University of I...

 

 

Capacité thermique La grande capacité thermique massique de l'eau donne à la bouillotte une grande capacité thermique sous un volume raisonnable.Données clés Unités SI joule par kelvin (J K−1) Dimension M·L 2·T −2·Θ −1 Nature Grandeur scalaire extensive Symbole usuel C X {\displaystyle C_{X}} à X {\displaystyle X} constant Lien à d'autres grandeurs C X = T ( ∂ S ∂ T ) X {\displaystyle C_{X}=T\left({\partial S \over \partial T}\right)...

Augustus De MorganAugustus De Morgan (1806-1871)Lahir(1806-06-27)27 Juni 1806Madurai, Kepresidenan Madras, Kekaisaran Britania (sekarang India)Meninggal18 Maret 1871(1871-03-18) (umur 64)London, InggrisTempat tinggalIndiaInggrisKebangsaanBritaniaAlmamaterTrinity CollegeUniversity of CambridgeDikenal atasHukum De MorganDe Morgan algebraRelation algebraUniversal algebraKarier ilmiahBidangMatematikawan dan logikawanInstitusiUniversity College LondonUniversity College SchoolPembimbing akade...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

A tidal island in Loch Moidart, Scotland Eilean ShonaScottish Gaelic nameEilean Seòna[1]Pronunciation[ˈelan ˈʃɔːnə] ⓘMeaning of namePossibly from the Norse for 'sea island'LocationEilean ShonaEilean Shona shown within Highland ScotlandOS grid referenceNM645739Coordinates56°47′55″N 5°51′39″W / 56.79859924°N 5.86086945°W / 56.79859924; -5.86086945Physical geographyIsland groupInner HebridesArea525 hectares (1,300 acres)Area rank72...

2008 murder in Florida, United States Murder of Denise Amber LeeVictim Denise Amber LeeLocationNorth Port, Florida, U.S.DateJanuary 17, 2008; 16 years ago (2008-01-17)Attack typeMurder by shooting, rape, kidnappingVictimDenise Amber Lee, aged 21PerpetratorMichael Lee KingVerdictGuilty on all countsConvictions First-degree murder Sexual battery KidnappingSentenceDeath Denise Amber Lee was a 21 year old woman who was murdered by Michael King in the U.S. state of Florida on Jan...

 

 

Mérida Unión DeportivaCalcio RomanosPecholatas Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Bianco, nero Dati societari Città Mérida Nazione  Spagna Confederazione UEFA Federazione FEF Campionato Primera Federación Fondazione 1990 Scioglimento2013 Stadio Romano(14.600 posti) Sito web www.meridaud.com Palmarès Si invita a seguire il modello di voce Il Mérida Unión Deportiva era una società calcistica spagnola con sede nella città di Mérida, nella comunità a...

 

 

Civitanova Marchecomune Civitanova Marche – VedutaPanorama di Civitanova Marche all'alba LocalizzazioneStato Italia Regione Marche Provincia Macerata AmministrazioneSindacoFabrizio Ciarapica (centro-destra) dal 26-6-2017 (2º mandato dal 27-6-2022) TerritorioCoordinate43°18′24.3″N 13°43′42.96″E / 43.30675°N 13.7286°E43.30675; 13.7286 (Civitanova Marche)Coordinate: 43°18′24.3″N 13°43′42.96″E / 43.30675�...

Serie B 1946-1947 Competizione Serie B Sport Calcio Edizione 15ª Organizzatore Lega Nazionale Date dal 22 settembre 1946al 31 agosto 1947 Luogo  Italia Partecipanti 60 Formula 3 gironi geografici Risultati Promozioni Pro PatriaLuccheseSalernitana Retrocessioni (escluse le squadre riammesse) Biellese, Sestrese, Lecco,Savona, Casale; Mestrina,Forlì, Cesena;Albatrastevere, Catanzaro, Foggia, Taranto. Statistiche Miglior marcatore Aldo Boffi (32)[1] Incontri disp...

 

 

City in Nabatieh Governorate, Lebanon This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nabatieh – news · newspapers · books · scholar · JSTOR (September 2010) (Learn how and when to remove this message) City in Nabatieh GovernorateNabatieh النبطيةCityNabatieh, 2006NabatiehLocation within LebanonCoordi...

 

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

Cet article est une ébauche concernant le métro et la Russie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Cet article ou cette section contient des informations sur un projet ferroviaire. Il se peut que ces informations soient de nature spéculative et que leur teneur change considérablement alors que les évènements approchent. Métro de TcheliabinskConstruction arrêtée Type Métro souterrain modifier...

 

 

' قرية غنيمة ال عقيل  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حضرموت المديرية مديرية وادي العين العزلة عزلة حوره السكان التعداد السكاني 2004 السكان 227   • الذكور 119   • الإناث 108   • عدد الأسر 26   • عدد المساكن 32 معلومات أخرى التوقيت توقيت اليمن (+...

 

 

Alamparai Rock FortPart of History of Tamil NaduKadappakkam Alamparai Rock FortCoordinates12°15′57″N 80°00′36″E / 12.2659°N 80.0101°E / 12.2659; 80.0101Site informationControlled byDepartment of Archaeology, Government of Tamil NaduOpen tothe publicNoConditionRuinsWebsitehttp://www.tnarch.gov.in/default.htmSite historyBuilt1735MaterialsGranite The ruins of Alamparai Fort (also called Alampara) lie near Kadappakkam in India,[1] a vill...

Der Mond ist aufgegangen, illustration by Ludwig Richter (1856) Der Mond ist aufgegangen (German for The moon has risen) is a German lullaby and evening song by Matthias Claudius, one of the most popular in German literature. Also known under the name Abendlied (German for evening song) it was first released in Musen-Almanach in 1779, published by Johann Heinrich Voß.[1] In 1783, Claudius published the poem with a modification to verse six in Asmus omnia sua secum portans oder Sämmt...

 

 

1996 single by Namie AmuroDon't Wanna CrySingle by Namie Amurofrom the album Sweet 19 Blues B-sidePresentReleasedMarch 13, 1996GenrePop, dance, R&BLength4:40LabelAvex TraxSongwriter(s)Tetsuya KomuroTakahiro MaedaCozy KuboProducer(s)Tetsuya KomuroNamie Amuro singles chronology Chase the Chance (1995) Don't Wanna Cry (1996) You're My Sunshine (1996) Don't Wanna Cry is a song by Japanese singer and record producer Namie Amuro released on the Avex Trax label, as her third single for her debut...

 

 

1974 Indian presidential election ← 1969 17 August 1974 1977 →   Nominee Fakhruddin Ali Ahmed Tridib Chaudhuri Party INC RSP Home state Assam West Bengal Electoral vote 754,113 189,196 Percentage 79.94% 20.06% President before election Varahagiri Venkata Giri Independent Elected President Fakhruddin Ali Ahmed INC The Election Commission of India held indirect sixth presidential elections of India on 17 August 1974. Fakhruddin Ali Ahmed, from Assam with 76...

The SlackerPoster LobiSutradaraChristy CabannePemeranEmily StevensSinematograferWilliam FildewPenyuntingMildred RichterPerusahaanproduksiMetro PicturesDistributorMetro PicturesTanggal rilis 16 Juli 1917 (1917-07-16) Durasi6 atau 7 rolNegaraAmerika SerikatBahasaBisu The Slacker adalah sebuah film drama bisu tahun 1917 garapan Christy Cabanne dan menampilkan Emily Stevens. Film tersebut diproduksi dan didistribusikan oleh Metro Pictures. Pranala luar The Slacker di IMDb (dalam bahasa Inggr...

 

 

У этого термина существуют и другие значения, см. Фейер. МедьеФейервенг. Fejér Флаг Герб[вд] 47°10′ с. ш. 18°35′ в. д.HGЯO Страна  Венгрия Входит в Центрально-Задунайский край Включает 108 муниципалитетов Адм. центр Секешфехервар Глава администрации Кристиан Мольнар И...