Character (mathematics)

In mathematics, a character is (most commonly) a special kind of function from a group to a field (such as the complex numbers). There are at least two distinct, but overlapping meanings.[1] Other uses of the word "character" are almost always qualified.

Multiplicative character

A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field (Artin 1966), usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.

This group is referred to as the character group of G. Sometimes only unitary characters are considered (thus the image is in the unit circle); other such homomorphisms are then called quasi-characters. Dirichlet characters can be seen as a special case of this definition.

Multiplicative characters are linearly independent, i.e. if are different characters on a group G then from it follows that .

Character of a representation

The character of a representation of a group G on a finite-dimensional vector space V over a field F is the trace of the representation (Serre 1977), i.e.

for

In general, the trace is not a group homomorphism, nor does the set of traces form a group. The characters of one-dimensional representations are identical to one-dimensional representations, so the above notion of multiplicative character can be seen as a special case of higher-dimensional characters. The study of representations using characters is called "character theory" and one-dimensional characters are also called "linear characters" within this context.

Alternative definition

If restricted to finite abelian group with representation in (i.e. ), the following alternative definition would be equivalent to the above (For abelian groups, every matrix representation decomposes into a direct sum of representations. For non-abelian groups, the original definition would be more general than this one):

A character of group is a group homomorphism i.e. for all

If is a finite abelian group, the characters play the role of harmonics. For infinite abelian groups, the above would be replaced by where is the circle group.

See also

References

  1. ^ "character in nLab". ncatlab.org. Retrieved 2017-10-31.

Read other articles:

L'uxoricide (du latin uxor : « épouse » et -cide, de caedere : « couper, tuer ») est le meurtre d'une femme par son conjoint ou son compagnon. Le terme peut désigner aussi bien l'acte lui-même que la personne qui le commet[1]. C'est une forme spécifique de féminicide[2]. Fréquence des uxoricides Le suicide du Galate, ou Galate se donnant la mort après avoir tué sa femme, palazzo Altemps à Rome. D'après l'Organisation mondiale de la santé, en Asie d...

 

 

Pirate metal Données clés Origines stylistiques Folk metal, speed metal, thrash metal, death metal mélodique Voir aussi Piraterie modifier Le pirate metal est un genre musical dérivé du folk metal, du speed metal, du thrash metal et du death metal mélodique. Il est popularisé par le groupe Running Wild à partir de 1987 avec la sortie de leur album Under Jolly Roger. Le style fut repris plus tard par d'autres groupes tels que Alestorm et Swashbuckle. Caractéristiques Le pirate metal ...

 

 

Radio station in North Charleston, South CarolinaWXLYNorth Charleston, South CarolinaBroadcast areaCharleston metropolitan area, South Carolina LowcountryFrequency102.5 MHz (HD Radio)BrandingY102.5ProgrammingFormatAdult contemporarySubchannelsHD2: Radio by Grace (Christian radio)OwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsWEZL, WRFQ, WSCC-FMHistoryFirst air dateApril 1958 (66 years ago) (1958-04) as WCSC-FMFormer call signsWCSC-FM (1958-?)WKTM (?–1984...

Argentines of English ancestry This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: English Argentines – news · newspapers · books · scholar · JSTOR (March 2024) (Learn how and when to remove this message) Anglo-ArgentinesTotal population100,000[1]Regions with significant populationsMainly Buenos AiresLan...

 

 

Boule et Billfumetto Rappresentazione di Boule e Bill su un muro a Bruxelles. Lingua orig.francese PaeseBelgio DisegniJean Roba, Laurent Verron, Jean Bastide EditoreDupuis, Dargaud Benelux Albi40 (completa) Boule e Bill da 1 a 29. Boule et Bill (AFI: [bulebil:]; Bill e Bull nell'edizione italiana, in cui curiosamente i nomi dei due protagonisti sono scambiati) è una serie belga di fumetti umoristici per bambini, che prende il nome dai suoi due personaggi principali. Creata ...

 

 

Railway station in Tamil Nadu, India This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Ulundurpet railway station – news · newspapers · books · scholar · JSTOR (December 2014) UlundurpettaiIndian Railways stationInsideGeneral informationLocationThiruchi–Chennai Hwy, Ulundurpet, Kallakurichi distric...

ميل المزولةالنوع جسم فيزيائي صناعي تعديل - تعديل مصدري - تعديل ويكي بياناتعقرب المزولة هو الجزء المثلث في هذه المزولة. المِيل[1] أو المِقْيَاس أو عقرب المزولة (باليونانية: γνώμων)‏ هي أحد أجزاء المزولة التي يستخدم ظلها لتقدير الوقت.[2][3][4] وقد استخدمت فكرة عق�...

 

 

Moravie(cs) Morava Drapeau de la Moravie. Armoiries de la Moravie. Localisation de la Moravie dans l'Union européenne Pays République tchèque Population 3 100 000 d'hab. Superficie 22 348,87 km2 Principales langues TchèqueMorave Cours d'eau Morava Ville(s) BrnoOlomouc modifier  La Moravie (/mɔʁavi/[1] ; en tchèque : Morava, /ˈmɔrava/[2] Écouter ; en allemand : Mähren /ˈmɛːʁən/[3] Écouter) est une région historique d’Europe centrale,...

 

 

Species of butterfly Acraea camaena Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Nymphalidae Genus: Acraea Species: A. camaena Binomial name Acraea camaena(Drury, 1773) [1][2] Synonyms Papilio camaena Drury, 1773 Acraea (Acraea) camaena Papilio murcia Fabricius, 1781 Acraea camaena, the large smoky acraea, is a butterfly in the family Nymphalidae. It is found in Senegal, Gambia, Guinea-Bissau, G...

Civil and human rights organization This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Young Lords – news · newspapers · books · scholar · JSTOR (February 2008) (Learn how and when to remove this message) Young Lords AbbreviationYLO/YLPFounderJose Cha-Cha JimenezFoundedSeptember 23, 1968 (1968-09...

 

 

Westminster Theological Seminary Logo Westminster Theological Seminary     Tampilkan peta yang diperbesarTampilkan peta yang diperkecil InformasiMotoΠΑΣΑ Η ΒΟΥΛΗ ΤΟΥ ΘΕΟΥ PASA E BOULE TOU THEOU (Yunani)Moto dalam bahasa InggrisThe whole counsel of God[1]JenisSeminari swastaDidirikan1929; 95 tahun lalu (1929)Afiliasi keagamaanReformed, ProtestanPresidenPeter LillbackJumlah mahasiswa692 (2017)LokasiGlenside, Pennsylvania, Amerika SerikatKampusPinggir...

 

 

Université du Québec à Montréal Universitet Land  Kanada Provins Québec Region Montréal Höjdläge 28 m ö.h. Koordinater 45°30′44″N 73°33′38″V / 45.51227°N 73.56055°V / 45.51227; -73.56055 Tidszon EST (UTC-5)  - sommartid EDT (UTC-4) Geonames 7670985 Université du Québec à Montréal är ett universitet i Kanada.[1] Det ligger i regionen Montréal och provinsen Québec, i den sydöstra delen av landet, 170 km öste...

رضا خالقي   معلومات شخصية الميلاد 21 سبتمبر 1983 (العمر 40 سنة) الطول 1.78 م (5 قدم 10 بوصة) مركز اللعب مهاجم الجنسية إيران  معلومات النادي النادي الحالي ذوب آهن أصفهان الرقم 9 مسيرة الشباب سنوات فريق 1997–2002 Matin Babol 2002–2004 Persepolis Babol 2004–2005 صبا قم 2005–2006 Fajr Sepah Tehran F.C. [الإنج...

 

 

Questa voce o sezione sull'argomento fiction televisive statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sugli argomenti fiction televisive di guerra e fiction televisive statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i s...

 

 

Cet article est une ébauche concernant un physicien américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Daniel TsuiBiographieNaissance 28 février 1939 (85 ans)Xian de BaofengNom dans la langue maternelle 崔琦 (Cuī Qí) ou Daniel Chee TsuiNationalité américaineDomicile New JerseyFormation Université de Chicago (doctorat) (jusq...

2010 single by CiaraSpeechlessSingle by Ciarafrom the album Basic Instinct A-sideGimmie DatReleasedSeptember 7, 2010 (2010-09-07)Studio Boom Boom Room (Burbank) Nash Estate (Atlanta) Triangle Sound (Atlanta) GenreR&BLength4:10LabelLaFaceSongwriter(s) Ciara Terius The-Dream Nash C. Tricky Stewart Producer(s) Tricky Stewart The-Dream Ciara singles chronology Ride (2010) Speechless (2010) Gimmie Dat (2010) Music videoSpeechless on YouTube Speechless is a song by American s...

 

 

سيوكس رابيدز     الإحداثيات 42°53′34″N 95°08′50″W / 42.892777777778°N 95.147222222222°W / 42.892777777778; -95.147222222222   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة بوينا فيستا  خصائص جغرافية  المساحة 2.143971 كيلومتر مربع2.131584 كيلومتر مربع (1 أبريل 201...

 

 

Former political Group This article is about the Conservative political group. For the British story paper, see Young England (magazine). For the patriotic melodrama, see Young England (play). For imaginary military society, see Edward Oxford. Young England LeaderBenjamin DisraeliIdeologyAbsolute MonarchismPaternalistic conservatismSocial ToryismPolitical positionCentre-right to Right-wingPolitics of EnglandPolitical partiesElections Young England was a Victorian era political group with...

For the alternative festival occurring at the same time, see Edinburgh Festival Fringe.Scottish annual festival of performing arts Edinburgh International FestivalNicola Benedetti, Director of the Edinburgh International Festival from 2023Date(s)2024: 5–28 August (exact dates vary each year)FrequencyAnnualLocation(s)Edinburgh, ScotlandInaugurated1947Patron(s)Queen Elizabeth The Queen Mother (1947–1952)Queen Elizabeth II (1952–2017)Prince Edward (2017–present)Websitewww.eif.co.uk The E...

 

 

 Nota: Para outros significados, veja Hong Kong (desambiguação). Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências (Encontre fontes: ABW  • CAPES  • Google (N • L • A)). (Setembro de 2023) Hong Kong香港   Região administrativa especial   Do topo para baixo e da esquerda para direita: panorama urbano de Hong Kong a partir do Victoria Peak; Casa do Governo de Ho...