In astrophysics , Chandrasekhar potential energy tensor provides the gravitational potential of a body due to its own gravity created by the distribution of matter across the body, named after the Indian American astrophysicist Subrahmanyan Chandrasekhar .[ 1] [ 2] [ 3] The Chandrasekhar tensor is a generalization of potential energy in other words, the trace of the Chandrasekhar tensor provides the potential energy of the body.
Definition
The Chandrasekhar potential energy tensor is defined as
W
i
j
=
− − -->
1
2
∫ ∫ -->
V
ρ ρ -->
Φ Φ -->
i
j
d
x
=
∫ ∫ -->
V
ρ ρ -->
x
i
∂ ∂ -->
Φ Φ -->
∂ ∂ -->
x
j
d
x
{\displaystyle W_{ij}=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}d\mathbf {x} =\int _{V}\rho x_{i}{\frac {\partial \Phi }{\partial x_{j}}}d\mathbf {x} }
where
Φ Φ -->
i
j
(
x
)
=
G
∫ ∫ -->
V
ρ ρ -->
(
x
′
)
(
x
i
− − -->
x
i
′
)
(
x
j
− − -->
x
j
′
)
|
x
− − -->
x
′
|
3
d
x
′
,
⇒ ⇒ -->
Φ Φ -->
i
i
=
Φ Φ -->
=
G
∫ ∫ -->
V
ρ ρ -->
(
x
′
)
|
x
− − -->
x
′
|
d
x
′
{\displaystyle \Phi _{ij}(\mathbf {x} )=G\int _{V}\rho (\mathbf {x'} ){\frac {(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}d\mathbf {x'} ,\quad \Rightarrow \quad \Phi _{ii}=\Phi =G\int _{V}{\frac {\rho (\mathbf {x'} )}{|\mathbf {x} -\mathbf {x'} |}}d\mathbf {x'} }
where
G
{\displaystyle G}
is the Gravitational constant
Φ Φ -->
(
x
)
{\displaystyle \Phi (\mathbf {x} )}
is the self-gravitating potential from Newton's law of gravity
Φ Φ -->
i
j
{\displaystyle \Phi _{ij}}
is the generalized version of
Φ Φ -->
{\displaystyle \Phi }
ρ ρ -->
(
x
)
{\displaystyle \rho (\mathbf {x} )}
is the matter density distribution
V
{\displaystyle V}
is the volume of the body
It is evident that
W
i
j
{\displaystyle W_{ij}}
is a symmetric tensor from its definition. The trace of the Chandrasekhar tensor
W
i
j
{\displaystyle W_{ij}}
is nothing but the potential energy
W
{\displaystyle W}
.
W
=
W
i
i
=
− − -->
1
2
∫ ∫ -->
V
ρ ρ -->
Φ Φ -->
d
x
=
∫ ∫ -->
V
ρ ρ -->
x
i
∂ ∂ -->
Φ Φ -->
∂ ∂ -->
x
i
d
x
{\displaystyle W=W_{ii}=-{\frac {1}{2}}\int _{V}\rho \Phi d\mathbf {x} =\int _{V}\rho x_{i}{\frac {\partial \Phi }{\partial x_{i}}}d\mathbf {x} }
Hence Chandrasekhar tensor can be viewed as the generalization of potential energy.[ 4]
Chandrasekhar's Proof
Consider a matter of volume
V
{\displaystyle V}
with density
ρ ρ -->
(
x
)
{\displaystyle \rho (\mathbf {x} )}
. Thus
W
i
j
=
− − -->
1
2
∫ ∫ -->
V
ρ ρ -->
Φ Φ -->
i
j
d
x
=
− − -->
1
2
G
∫ ∫ -->
V
∫ ∫ -->
V
ρ ρ -->
(
x
)
ρ ρ -->
(
x
′
)
(
x
i
− − -->
x
i
′
)
(
x
j
− − -->
x
j
′
)
|
x
− − -->
x
′
|
3
d
x
′
d
x
=
− − -->
G
∫ ∫ -->
V
∫ ∫ -->
V
ρ ρ -->
(
x
)
ρ ρ -->
(
x
′
)
x
i
(
x
j
− − -->
x
j
′
)
|
x
− − -->
x
′
|
3
d
x
d
x
′
=
G
∫ ∫ -->
V
d
x
ρ ρ -->
(
x
)
x
i
∂ ∂ -->
∂ ∂ -->
x
j
∫ ∫ -->
V
d
x
′
ρ ρ -->
(
x
′
)
|
x
− − -->
x
′
|
=
∫ ∫ -->
V
ρ ρ -->
x
i
∂ ∂ -->
Φ Φ -->
∂ ∂ -->
x
j
d
x
{\displaystyle {\begin{aligned}W_{ij}&=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}d\mathbf {x} \\&=-{\frac {1}{2}}G\int _{V}\int _{V}\rho (\mathbf {x} )\rho (\mathbf {x'} ){\frac {(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}d\mathbf {x'} d\mathbf {x} \\&=-G\int _{V}\int _{V}\rho (\mathbf {x} )\rho (\mathbf {x'} ){\frac {x_{i}(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}d\mathbf {x} d\mathbf {x'} \\&=G\int _{V}d\mathbf {x} \rho (\mathbf {x} )x_{i}{\frac {\partial }{\partial x_{j}}}\int _{V}d\mathbf {x'} {\frac {\rho (\mathbf {x'} )}{|\mathbf {x} -\mathbf {x'} |}}\\&=\int _{V}\rho x_{i}{\frac {\partial \Phi }{\partial x_{j}}}d\mathbf {x} \end{aligned}}}
Chandrasekhar tensor in terms of scalar potential
The scalar potential is defined as
χ χ -->
(
x
)
=
− − -->
G
∫ ∫ -->
V
ρ ρ -->
(
x
′
)
|
x
− − -->
x
′
|
d
x
′
{\displaystyle \chi (\mathbf {x} )=-G\int _{V}\rho (\mathbf {x'} )|\mathbf {x} -\mathbf {x'} |d\mathbf {x'} }
then Chandrasekhar [ 5] proves that
W
i
j
=
δ δ -->
i
j
W
+
∂ ∂ -->
2
χ χ -->
∂ ∂ -->
x
i
∂ ∂ -->
x
j
{\displaystyle W_{ij}=\delta _{ij}W+{\frac {\partial ^{2}\chi }{\partial x_{i}\partial x_{j}}}}
Setting
i
=
j
{\displaystyle i=j}
we get
∇ ∇ -->
2
χ χ -->
=
− − -->
2
W
{\displaystyle \nabla ^{2}\chi =-2W}
, taking Laplacian again, we get
∇ ∇ -->
4
χ χ -->
=
8
π π -->
G
ρ ρ -->
{\displaystyle \nabla ^{4}\chi =8\pi G\rho }
.
See also
References
^ Chandrasekhar, S; Lebovitz NR (1962). "The Potentials and the Superpotentials of Homogeneous Ellipsoids" (PDF). Ap. J. 136: 1037–1047. Bibcode :1962ApJ...136.1037C . doi :10.1086/147456 . Retrieved March 24, 2012.
^ Chandrasekhar, S; Fermi E (1953). "Problems of Gravitational Stability in the Presence of a Magnetic Field" (PDF). Ap. J. 118: 116. Bibcode :1953ApJ...118..116C . doi :10.1086/145732 . Retrieved March 24, 2012.
^ Chandrasekhar, Subrahmanyan. Ellipsoidal figures of equilibrium. Vol. 9. New Haven: Yale University Press, 1969.
^ Binney, James; Tremaine, Scott (30 October 2011). Galactic Dynamics (Second ed.). Princeton University Press . pp. 59– 60. ISBN 978-1400828722 .
^ Chandrasekhar, Subrahmanyan. Ellipsoidal figures of equilibrium. Vol. 9. New Haven: Yale University Press, 1969.