In conformal field theory, the central charge is a c-number (commutes with every other operator) term that appears in the commutator of two components of the stress–energy tensor.[2] As a result, conformal field theory is characterized by a representation of Virasoro algebra with central charge c.
Gauss sums and higher central charge
For conformal field theories that are described by modular category, the central charge can be extracted from the Gauss sum. In terms of anyon quantum dimension da and topological spin θa of anyon a, the Gauss sum is given by[3]
This definition allows extending the definition to a higher central charge,[4][5] using the higher Gauss sums:[6]
The vanishing higher central charge is a necessary condition for the topological quantum field theory to admit topological (gapped) boundary conditions.[4]
^Kobayashi, Ryohei; Wang, Taige; Soejima, Tomohiro; Mong, Roger S. K.; Ryu, Shinsei (2023). "Extracting higher central charge from a single wave function". arXiv:2303.04822 [cond-mat.str-el].