Cassini's laws

Cassini's laws provide a compact description of the motion of the Moon. They were established in 1693 by Giovanni Domenico Cassini, a prominent scientist of his time.[1]

Refinements of these laws to include physical librations have been made,[1] and they have been generalized to treat other satellites and planets.[2][3][4]

Cassini's laws

Orbital inclination and rotation. When the Moon is 5.14° north of the ecliptic, its north pole is tilted 6.68° away from the Earth. The orientation of the plane containing the vectors normal to the orbits and the Moon's rotational axis rotates 360° with a period of about 18.6 years, whereas the Earth's axis precesses with a period of around 26,000 years, so the line-up of this illustration (a major lunar standstill) occurs only once every 18.6 years.
  1. The Moon has a 1:1 spin–orbit resonance. This means that the rotationorbit ratio of the Moon is such that the same side of it always faces the Earth.
  2. The Moon's rotational axis maintains a constant angle of inclination from the ecliptic plane. The Moon's rotational axis precesses so as to trace out a cone that intersects the ecliptic plane as a circle.
  3. A plane formed from a normal to the ecliptic plane and a normal to the Moon's orbital plane will contain the Moon's rotational axis.

In the case of the Moon, its rotational axis always points some 1.5 degrees away from the North ecliptic pole. The normal to the Moon's orbital plane and its rotational axis are always on opposite sides of the normal to the ecliptic.

Therefore, both the normal to the orbital plane and the Moon's rotational axis precess around the ecliptic pole with the same period. The period is about 18.6 years and the motion is retrograde.

Cassini state

A system obeying these laws is said to be in a Cassini state, that is: an evolved rotational state where the spin axis, orbit normal, and normal to the Laplace plane are coplanar while the obliquity remains constant.[2][3][5] The Laplace plane is defined as the plane about which a planet or satellite orbit precesses with constant inclination.[5] The normal to the Laplace plane for a moon is between the planet's spin axis and the planet's orbit normal, being closer to the latter if the moon is distant from the planet. If a planet itself is in a Cassini state, the Laplace plane is the invariable plane of the stellar system.

Cassini state 1 is defined as the situation in which both the spin axis and the orbit normal axis are on the same side of the normal to the Laplace plane. Cassini state 2 is defined as the case in which the spin axis and the orbit normal axis are on opposite sides of the normal to the Laplace plane.[6] Earth's Moon is in Cassini state 2.

In general, the spin axis moves in the direction perpendicular to both itself and the orbit normal, due to the tidal force exerted by the object being orbited (planet or star) and other objects in the system. (In the case of the Moon, its spin axis moves mostly under the influence of the Earth, whereas the smaller tidal influence of the Sun works in the same direction at full moon and in the opposite direction at new moon and is thus negligible.) The rate of movement of the spin axis goes to zero if the spin axis coincides with the orbit normal. If the orbit normal precesses in a regular circular motion (due to tidal influences from other objects, such as the Sun in the case of the Moon), it is possible to characterize the solutions to the differential equation for the motion of the spin axis. It turns out that the spin axis traces out loops on the unit sphere that rotates at the speed of the orbital precession (so that the orbit normal and the normal to the Laplace plane are fixed points in the sphere). With certain values of the parameters, there are three areas on the sphere in each of which we have circulation around a point inside the area where the spin axis doesn't move (in this rotating frame of reference). These points are Cassini states 1 and 2 and a third Cassini state in which the rotation is retrograde (which would not apply to a moon like ours that is tidally locked). The three areas are separated by a separatrix that crosses itself, and the point where it crosses itself is the unstable Cassini state 4. (Under other parameter values only states 2 and 3 exist, and there is no separatrix.) If an object flexes and dissipates kinetic energy, then these solutions are not exact and the system will slowly evolve and approach a stable Cassini state. This has happened with the Moon. It has reached a state with a constant obliquity of 6.7°, at which the precession of the spin axis takes the same 18.6 years as taken by the precession of the orbit normal, and is thus in a Cassini state.[7]

See also

References and notes

  1. ^ a b For the original statement of the laws, see V V Belet︠s︡kiĭ (2001). Essays on the Motion of Celestial Bodies. Birkhäuser. p. 181. ISBN 3-7643-5866-1.
  2. ^ a b Peale, Stanton J. (1969). "Generalized Cassini's Laws". The Astronomical Journal. 74: 483. Bibcode:1969AJ.....74..483P. doi:10.1086/110825. ISSN 0004-6256.
  3. ^ a b Yseboodt, Marie; Margot, Jean-Luc (2006). "Evolution of Mercury's obliquity" (PDF). Icarus. 181 (2): 327–337. Bibcode:2006Icar..181..327Y. doi:10.1016/j.icarus.2005.11.024. ISSN 0019-1035. S2CID 8795467.
  4. ^ V V Belet︠s︡kiĭ (2001). Essays on the Motion of Celestial Bodies. Birkhäuser. p. 179. ISBN 3-7643-5866-1.
  5. ^ a b Y. Calisesi (2007). Solar Variability and Planetary Climates. Springer. p. 34. ISBN 978-0-387-48339-9.
  6. ^ J. N. Winn and M. J. Holman (2005),"Obliquity Tides on Hot Jupiters", The Astrophysical Journal, Volume 628, Issue 2, pp. L159-L162.
  7. ^ See William Ward and Douglas Hamilton (Nov 2004). "Tilting Saturn. I. Analytic Model". The Astronomical Journal. 128 (5): 2501–2509. Bibcode:2004AJ....128.2501W. doi:10.1086/424533. S2CID 12049556. Based on work by G. Colombo in 1966.

Further reading

Read other articles:

Down to the Sea in ShipsTeater Chicago menampilkan film tersebutSutradaraHenry HathawayProduserLouis D. LightonDitulis olehSy BartlettSkenarioJohn Lee MahinPemeranRichard WidmarkLionel BarrymoreDean StockwellPenata musikAlfred NewmanSinematograferJoseph MacDonaldPenyuntingDorothy SpencerPerusahaanproduksi20th Century FoxDistributor20th Century FoxTanggal rilis 22 Februari 1949 (1949-02-22) Durasi120 menitNegaraAmerika SerikatBahasaInggrisPendapatankotor$1.650.000[1][2&#...

 

Maraton Chicago ke-42LokasiChicago, Amerika SerikatTanggal13 Oktober 2019JuaraPutraLawrence CheronoDaniel Romanchuk (kursi roda)PutriBrigid KosgeiManuela Schar (kursi roda)← 20182020 → Maraton Chicago 2019, acara tahunan ke-42 Maraton Chicago, diadakan di Chicago, Illinois, Amerika Serikat pada 13 Oktober 2019. Perlombaan putra dimenangkan oleh Kenya Lawrence Cherono sedangkan divisi perempuan dimenangkan oleh Kenya Brigid Kosgei.[1] Ringkasan Lawrence Cherono da...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Divisi Infanteri ke-2제2보병사단Lambang divisiAktifMei 12, 1949 - Desenver 6, 2019Negara South KoreaCabang Angkatan Darat Korea SelatanTipe unitInfanteriJumlah personelDivisiBagian dariIII Corps (Korea Selatan)MarkasYanggu County, Gangwo...

Not to be confused with Alleged Violations of the 1955 Treaty of Amity (Iran v. United States). Oil Platforms caseCourtInternational Court of JusticeFull case nameOil Platforms (Islamic Republic of Iran v. United States of America) Decided6 November 2003Citation(s)[2003] ICJ 4Transcript(s)[2003] ICJ Rep 161 (6 November 2003)Case opinionshttps://www.icj-cij.org/en/case/90 The Oil Platforms case (formally, Oil Platforms (Islamic Republic of Iran v. United States of America) ICJ 4) is a public i...

 

American politician Mary Ann LisantiMember of the Maryland House of Delegatesfrom the 34A districtIn officeJanuary 13, 2015 – January 11, 2023Serving with Glen GlassPreceded byMary-Dulany JamesSucceeded byAndre Johnson Jr.ConstituencyHarford CountyMember of the Harford County CouncilDistrict FIn officeDecember 4, 2006 – December 1, 2014Preceded byCecilia M. SteppSucceeded byCurtis L. Beulah Personal detailsBorn (1967-10-27) October 27, 1967 (age ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bendera Vanuatu – berita · surat kabar · buku · cendekiawan · JSTOR Rasio bendera: 19:36 Bendera Laut Bendera Vanuatu disetujui tanggal 13 Februari 1980.[1] Ketika Partai Vanua'aku memimpin kemer...

1942 film by Spencer Gordon Bennet They Raid by NightOriginal theatrical posterDirected bySpencer Gordon BennetScreenplay byJack NattefordProduced byDixon R. HarwinStarringLyle TalbotJune DuprezCinematographyGilbert WarrentonEdited byCharles Henkel Jr.Music byDavid ChudnowProductioncompanyPRCDistributed byPRC (US)Release date June 19, 1942 (1942-06-19) (US) Running time73 minutesCountryUnited StatesLanguageEnglish They Raid by Night is a 1942 American low-budget World War I...

 

Federal constituency in Johor, Malaysia Johor Bahru (P160) Johor constituencyFederal constituencyLegislatureDewan RakyatMPAkmal Nasrullah Mohd NasirPHConstituency created1955Constituency abolished1959Constituency re-created1974First contested1955Last contested2022DemographicsPopulation (2020)[1]177,823Electors (2022)[2]136,368Area (km²)[3]35Pop. density (per km²)5,080.7 Johor Bahru is a federal constituency in Johor Bahru District, Johor, Malaysia, that has been repr...

 

American missionary Lorenzo LyonsLorenzo Lyons circa 1880Born(1807-04-18)April 18, 1807Colrain, MassachusettsDiedOctober 6, 1886(1886-10-06) (aged 79)Waimea, Hawaii County, HawaiiOther namesMakua LaianaKnown forMissionary to HawaiiSpouses Betsy Curtis Lucia Smith His grave site. Lorenzo Lyons or Makua Laiana (April 18, 1807 – October 6, 1886) was an early missionary to the Kingdom of Hawaii. He was a songwriter who wrote the lyrics of Hawaiʻi Aloha, which was inducted into t...

Portugal 11.er puesto Titular Alternativo Datos generales Asociación FPF Confederación UEFA Seudónimo Los lusos Ranking FIFA 3.er lugar (mayo de 2010) Participación 5.ª Mejor resultado Tercer lugar (1966) Entrenador Carlos Queiroz Estadísticas Partidos 4 Goles anotados 7 (1.75 por partido) Goles recibidos 1 (0.25 por partido) Goleador Tiago Mendes (2 goles) Cronología Anterior Alemania 2006 Siguiente Brasil 2014 La Selección de Portugal fue uno de los 32 equipos participantes de la C...

 

1920s period of sustained economic prosperity in Western Europe and North America For other uses, see Roaring Twenties (disambiguation). For the similar cultural period in France, see Années folles. For the similar cultural period in Germany, see Golden Twenties. Roaring Twenties1920–1929Josephine Baker performing the Charleston at the Folies Bergère, ParisLocationMainly the United States (equivalents and effects in the greater Western world)Key eventsOsage Indian murders Harlem Renaissan...

 

Scottish political party The subject of this article is participating in the 2024 general election to the House of Commons of the United Kingdom on 4 July, and has had no MPs in the House of Commons since Parliament was dissolved on 30 May. Some parts of this article may be out of date during this period. Please feel free to improve this article (but note that updates without valid and reliable references will be removed) or discuss changes on the talk page. Scottish National Party ...

Fahmy RadhiLahir30 Januari 1961 (umur 63)Solo, Jawa TengahKebangsaanIndonesiaAlmamater- Universitas Gadjah Mada, Yogyakarta - Asian Institute of Technology, Bangkok, Thailand- University of Newcastle, AustraliaPekerjaanPengajarDikenal atasPengamat Ekonomi UGM Dr. Fahmy Radhi, MBA (lahir 30 Januari 1961) adalah seorang pengamat ekonomi, pakar di bidang manajemen dan pengajar Indonesia. Ia merupakan dosen Sekolah Vokasi Universitas Gadjah Mada.[1] Riwayat dan pendidikan Fahmy Radh...

 

Ethnic group Greeks in PolandSaint Josaphat church in Lublin, founded by Greeks in 1768Total population3600[1]Regions with significant populationsWrocław, Police, Zgorzelec, Świdnica, Ustrzyki Dolne and Bielawa.[citation needed]LanguagesGreek, PolishReligionGreek Orthodox ChristianityRelated ethnic groupsGreek diaspora The Greeks in Poland (Greek: Έλληνες στην Πολωνία, romanized: Éllines stin Polonía; Polish: Grecy w Polsce) form one of the country's...

 

勒内·科蒂第17任法国总统任期1954年1月16日—1959年1月8日总理约瑟夫·拉尼埃皮埃尔·孟戴斯-弗朗斯埃德加·富尔居伊·摩勒莫里斯·布尔热-莫努里费利克斯·加亚尔皮埃尔·弗林姆兰夏尔·戴高乐前任樊尚·奥里奥尔继任夏尔·戴高乐 (法蘭西第五共和國)總統 个人资料出生(1882-03-20)1882年3月20日法国勒阿弗尔逝世1962年11月22日(1962歲—11—22)(80歲)法国勒阿弗尔墓地法国勒阿弗...

المؤسسة اللبنانية للإرسال  شعار المؤسسة من 2013-حتى الآن    معلومات عامة النوع متنوعة الشعار التجاري « القصة كلها » المدير بيار الضاهر تاريخ التأسيس 23 أغسطس 1985  البلد لبنان  اللغة العربية المقر الرسمي بيروت  الموقع الرسمي الموقع الرسمي (العربية)  صفحة �...

 

Multi-parasport event in the US and UK VII Paralympic GamesHost cityNew York City, United StatesStoke Mandeville, United KingdomNations45 (USA)41 (GBR)Athletes1,800 (USA)1,100 (GBR)Events~300 in 15 sports (USA)603 in 10 sports (GBR)Opening17 June (USA)22 July (GBR)Closing30 June (USA)1 August (GBR)Opened byPresident Ronald Reagan (USA)Charles, Prince of Wales (GBR)StadiumMitchel Athletic Complex (USA)Stoke Mandeville Stadium (GBR)Summer← Arnhem 1980Seoul 1988 → Winter...

 

Portuguese football club This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (September 2021) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additi...

Private research university in Malaysia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Multimedia University – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this message) Multimedia University 多媒体大学Universiti Multimedia (Malay)Other namesUniversiti ...

 

2000 greatest hits album by Special EdThe Best of Special EdGreatest hits album by Special EdReleasedApril 14, 2000GenreHip hopProducerHowie TeeSpecial Ed chronology Revelations(1995) The Best of Special Ed(2000) Still Got It Made(2004) Professional ratingsReview scoresSourceRatingAllMusic[1] The Best of Special Ed is the greatest hits album by the rapper Special Ed, released in 2000. Track listing I Got It Made Neva Go Back Come On, Let's Move It I'm the Magnificent (The Magn...