Cassie's law

Cassie's law, or the Cassie equation, describes the effective contact angle θc for a liquid on a chemically heterogeneous surface, i.e. the surface of a composite material consisting of different chemistries, that is, non-uniform throughout.[1] Contact angles are important as they quantify a surface's wettability, the nature of solid-fluid intermolecular interactions.[2] Cassie's law is reserved for when a liquid completely covers both smooth and rough heterogeneous surfaces.[3]

Cassie-Baxter state. A water droplet resting on a heterogeneous surface (sand), forms a contact angle, here

More of a rule than a law, the formula found in literature for two materials is;

where and are the contact angles for components 1 with fractional surface area , and 2 with fractional surface area in the composite material respectively. If there exist more than two materials then the equation is scaled to the general form of;

, with .[4]

Cassie-Baxter

Cassie's law takes on special meaning when the heterogeneous surface is a porous medium. now represents the solid surface area and air gaps, such that the surface is no longer completely wet. Air creates a contact angle of and because = , the equation reduces to:

, which is the Cassie-Baxter equation.[5]

Unfortunately the terms Cassie and Cassie-Baxter are often used interchangeably but they should not be confused. The Cassie-Baxter equation is more common in nature, and focuses on the 'incomplete coating' of surfaces by a liquid only. In the Cassie-Baxter state liquids sit upon asperities, resulting in air pockets that are bounded between the surface and liquid.

Homogeneous surfaces

The Cassie-Baxter equation is not restricted to only chemically heterogeneous surfaces, as air within porous homogeneous surfaces will make the system heterogeneous. However, if the liquid penetrates the grooves, the surface returns to homogeneity and neither of the previous equations can be used. In this case the liquid is in the Wenzel state, governed by a separate equation. Transitions between the Cassie-Baxter state and the Wenzel state can take place when external stimuli such as pressure or vibration are applied to the liquid on the surface.[6]

Equation origin

When a liquid droplet interacts with a solid surface, its behaviour is governed by surface tension and energy. The liquid droplet could spread indefinitely or it could sit on the surface like a spherical cap at which point there exists a contact angle.

Defining as the free energy change per unit area caused by a liquid spreading,

where , are the fractional areas of the two materials on the heterogeneous surface, and and the interfacial tensions between solid, air and liquid.

The contact angle for the heterogeneous surface is given by,

, with the interfacial tension between liquid and air.

The contact angle given by the Young equation is,

Thus by substituting the first expression into Young's equation, we arrive at Cassie's law for heterogeneous surfaces,

[1]

History behind Cassie's law

Young's law

Studies concerning the contact angle existing between a liquid and a solid surface began with Thomas Young in 1805.[7] The Young equation

Different contact angle scenarios

reflects the relative strength of the interaction between surface tensions at the three phase contact, and is the geometric ratio between the energy gained in forming a unit area of the solid–liquid interface to that required to form a liquid–air interface.[1] However Young's equation only works for ideal and real surfaces and in practice most surfaces are microscopically rough.

Cassie's law

Wenzel state

In 1936 Young's equation was modified by Robert Wenzel to account for rough homogeneous surfaces, and a parameter was introduced, defined as the ratio of the true area of the solid compared to its nominal.[8] Known as the Wenzel equation,

shows that the apparent contact angle, the angle measured at casual inspection, will increase if the surface is roughened. Liquids with contact angle are known to be in the Wenzel state.

Cassie-Baxter state

The notion of roughness effecting the contact angle was extended by Cassie and Baxter in 1944 when they focused on porous mediums, where liquid does not penetrate the grooves on rough surface and leaves air gaps.[5] They devised the Cassie-Baxter equation;

, sometimes written as where the has become .[9]

Cassie's Law

In 1948 Cassie refined this for two materials with different chemistries on both smooth and rough surfaces, resulting in the aforementioned Cassie's law

Arguments and inconsistencies

Following the discovery of superhydrophobic surfaces in nature and the growth of their application in industry, the study of contact angles and wetting has been widely reexamined. Some claim that Cassie's equations are more fortuitous than fact with it being argued that emphasis should not be placed on fractional contact areas but actually the behaviour of the liquid at the three phase contact line.[10] They do not argue never using the Wenzel and Cassie-Baxter's equations but that “they should be used with knowledge of their faults”. However the debate continues, as this argument was evaluated and criticised with the conclusion being drawn that contact angles on surfaces can be described by the Cassie and Cassie-Baxter equations provided the surface fraction and roughness parameters are reinterpreted to take local values appropriate to the droplet.[11] This is why Cassie's law is actually more of a rule.

Examples

It is widely agreed that the water repellency of biological objects is due to the Cassie-Baxter equation. If water has a contact angle between , then the surface is classed as hydrophilic, whereas a surface producing a contact angle between is hydrophobic. In the special cases where the Contact angle is , then it is known as superhydrophobic.

Lotus Effect

One example of a superhydrophobic surface in nature is the Lotus leaf.[12] Lotus leaves have a typical contact angle of , ultra low water adhesion due to minimal contact areas, and a self cleaning property which is characterised by the Cassie-Baxter equation.[13] The microscopic architecture of the Lotus leaf means that water will not penetrate nanofolds on the surface, leaving air pockets below. The water droplets become suspended in the Cassie-Baxter state and are able to roll off the leaf picking up dirt as they do so, thus cleaning the leaf.

Feathers

The Cassie–Baxter wetting regime also explains the water repellent features of the pennae (feathers) of a bird. The feather consists of a topography network of 'barbs and barbules' and a droplet that is deposited on a these resides in a solid-liquid-air non-wetting composite state, where tiny air pockets are trapped within.[14]

See also

References

  1. ^ a b c Cassie, A. B. D. (1948). "Contact angles". Discussions of the Faraday Society. 3: 11. doi:10.1039/DF9480300011.
  2. ^ Henderson, J. R. (20 May 2000). "Statistical mechanics of Cassie's law". Molecular Physics. 98 (10): 677–681. Bibcode:2000MolPh..98..677H. doi:10.1080/00268970009483335. S2CID 95034874.
  3. ^ Milne, A.J.B.; Amirfazli, A. (January 2012). "The Cassie equation: How it is meant to be used". Advances in Colloid and Interface Science. 170 (1–2): 48–55. doi:10.1016/j.cis.2011.12.001. PMID 22257682.
  4. ^ Berthier, Jean; Silberzan, Pascal (2010). Microfluidics for biotechnology (2nd ed.). Boston: Artech House. ISBN 978-1-59693-444-3. OCLC 642685865.[page needed]
  5. ^ a b Cassie, A. B. D.; Baxter, S. (1944). "Wettability of porous surfaces". Transactions of the Faraday Society. 40: 546. doi:10.1039/tf9444000546.
  6. ^ Lopes, Daisiane M.; Ramos, Stella M. M.; de Oliveira, Luciana R.; Mombach, José C. M. (2013). "Cassie–Baxter to Wenzel state wetting transition: a 2D numerical simulation". RSC Advances. 3 (46): 24530. Bibcode:2013RSCAd...324530L. doi:10.1039/c3ra45258a.
  7. ^ "III. An essay on the cohesion of fluids". Philosophical Transactions of the Royal Society of London. 95: 65–87. January 1805. doi:10.1098/rstl.1805.0005. S2CID 116124581.
  8. ^ Marmur, Abraham (September 2003). "Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?". Langmuir. 19 (20): 8343–8348. doi:10.1021/la0344682.
  9. ^ Scientific, Biolin. "Influence of Surface roughness on contact angle and wettability" (PDF).
  10. ^ Gao, Lichao; McCarthy, Thomas J. (March 2007). "How Wenzel and Cassie Were Wrong". Langmuir. 23 (7): 3762–3765. doi:10.1021/la062634a. PMID 17315893.
  11. ^ McHale, G. (July 2007). "Cassie and Wenzel: Were They Really So Wrong?". Langmuir. 23 (15): 8200–8205. doi:10.1021/la7011167. PMID 17580921.
  12. ^ Law, Kock-Yee (20 February 2014). "Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right". The Journal of Physical Chemistry Letters. 5 (4): 686–688. doi:10.1021/jz402762h. PMID 26270837.
  13. ^ Darmanin, Thierry; Guittard, Frédéric (June 2015). "Superhydrophobic and superoleophobic properties in nature". Materials Today. 18 (5): 273–285. doi:10.1016/j.mattod.2015.01.001.
  14. ^ Bormashenko, Edward; Bormashenko, Yelena; Stein, Tamir; Whyman, Gene; Bormashenko, Ester (July 2007). "Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition". Journal of Colloid and Interface Science. 311 (1): 212–216. Bibcode:2007JCIS..311..212B. doi:10.1016/j.jcis.2007.02.049. PMID 17359990.

Read other articles:

BanjarDesaKantor Desa BanjarPeta lokasi Desa BanjarNegara IndonesiaProvinsiJawa TimurKabupatenBanyuwangiKecamatanLicinKode pos68454Kode Kemendagri35.10.24.2004 Luas4,36 km²Jumlah penduduk2.511 jiwaKepadatan576 jiwa/km² Banjar adalah sebuah nama desa di wilayah Licin, Kabupaten Banyuwangi, Provinsi Jawa Timur, Indonesia. Desa ini memiliki tagline bertajuk Banjar Sweet Village. Desa Banjar memiliki kuliner khas Sego lemeng dan Kopi uthek Pembagian wilayah Desa Banjar terdiri dari 4 dusun...

 

 

Good Design mark, created by Morton and Millie Goldsholl for MoMA The Good Design exhibition series was an industrial design program organized by the Museum of Modern Art (MoMA) in New York, in cooperation with the Merchandise Mart in Chicago, held between 1950 and 1955. No awards were granted to designers whose work was put on view in these exhibitions, despite misinformation suggesting otherwise. History The exhibition series Good Design was spearheaded by Edgar Kaufmann, Jr.,[1] wh...

 

 

Former American Diplomat George T. Marye Jr.United States Ambassador to Russia In officeOctober 30, 1914 – March 29, 1916PresidentWoodrow WilsonPreceded byCurtis GuildSucceeded byDavid R. Francis Personal detailsBorn(1849-12-13)December 13, 1849Baltimore, MarylandDiedSeptember 2, 1933(1933-09-02) (aged 83)Washington, D.C.Resting placeCypress Lawn Memorial Park, CaliforniaAlma materCambridge University (LL.B)ProfessionBankerAwardsOrder of Saint Alexander Nevsky George Thomas Ma...

Piala Raja Spanyol 2013–2014Negara SpanyolJumlah peserta83Juara bertahanAtlético MadridJuaraReal Madrid(gelar ke-19)Tempat keduaBarcelonaJumlah pertandingan112Jumlah gol236 (2.11 per pertandingan)Pencetak gol terbanyak Lionel Messi(F.C. Barcelona)(5 gol)← 2012–2013 2014–2015 → Piala Raja Spanyol 2013–2014 adalah edisi ke-110 dari penyelenggaraan Piala Raja Spanyol, turnamen sepak bola di Spanyol dengan sistem piala. Edisi ini dimenangkan oleh Real Madrid setelah mengalahkan ...

 

 

Cet article est une ébauche concernant l’industrie et le génie mécanique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Exemple de mécanique de précision : vue en coupe d'un mecanisme d'horlogerie La mécanique de précision regroupe les activités de la fabrication de pièces qui ont de faibles tolérances. Certaines industries telles que la construction aéronautique, l'industrie horlogère, l'ar...

 

 

Pour des informations sur l'ensemble politique roumain, voir Roumanie. Pour des informations sur la langue, voir Roumain. Ne doit pas être confondu avec Roms. Roumains(ro) Români 1re rangée : Marthe Bibesco • Constantin Brâncuși • Dimitrie Cantemir • Henri Coandă • Mihai Eminescu • George Enescu 2e rangée : Avram Iancu • Nicolae Iorga • Mihail Kogălniceanu • Titu Maiorescu • Inocențiu Micu-Klein • Nadia Comăneci Populations importantes par r...

Unincorporated community in Riley County, Kansas Unincorporated community in Kansas, United StatesZeandale, KansasUnincorporated communityZeandale (2022)KDOT map of Riley County (legend)ZeandaleShow map of KansasZeandaleShow map of the United StatesCoordinates: 39°09′34″N 96°25′36″W / 39.15944°N 96.42667°W / 39.15944; -96.42667[1]CountryUnited StatesStateKansasCountiesRileyFounded1855Elevation[1]1,011 ft (308 m)Population (202...

 

 

American actress (born 1970) Jennifer ConnellyConnelly in 2010BornJennifer Lynn Connelly (1970-12-12) December 12, 1970 (age 53)Cairo, New York, U.S.EducationYale UniversityStanford UniversityOccupationActressYears active1982–presentSpouse Paul Bettany ​(m. 2003)​Children3 Jennifer Lynn Connelly (born December 12, 1970) is an American actress. She began her career as a child model before making her acting debut in the 1984 crime film Once Upon a Time i...

 

 

Street in Chennai, India BroadwayPrakasam RoadA section of the street in 2007Maintained byCorporation of ChennaiLength1.05 mi (1.69 km)Coordinates13°05′59″N 80°17′12″E / 13.09965°N 80.286613°E / 13.09965; 80.286613South endChina Bazaar Road, George Town, ChennaiNorth endOld Jail Road/Ibrahim Sahib Street, ChennaiConstructionInauguration= Late 18th century Broadway (officially known as Prakasam Salai, after the freedom fighter T. Prakasam...

Reform Jewish synagogue in Los Angeles, California, US For similarly named synagogues, see Temple Israel. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Temple Israel of Hollywood – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message) This article may be w...

 

 

Temperate rainforest in the Pacific Northwest This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2012) (Learn how and when to remove this message) Temperate rain forests, such as this in British Columbia's Vancouver Island, often grow right up to the shoreline. The Pacific temperate rainforests of western North America is the largest temperate rain forest r...

 

 

1900年美國總統選舉 ← 1896 1900年11月6日 1904 → 447張選舉人票獲勝需224張選舉人票投票率73.2%[1] ▼ 6.1 %   获提名人 威廉·麥金利 威廉·詹寧斯·布賴恩 政党 共和黨 民主党 家鄉州 俄亥俄州 內布拉斯加州 竞选搭档 西奧多·羅斯福 阿德萊·史蒂文森一世 选举人票 292 155 胜出州/省 28 17 民選得票 7,228,864 6,370,932 得票率 51.6% 45.5% 總統選舉結果地圖,紅色代表...

Mintakat riparian yang terpelihara baik di kanan-kiri sungai yang memasok air ke Danau Erie, Kanada. Mintakat riparian/lasta atau wilayah riparian adalah mintakat peralihan antara sungai dengan daratan. Wilayah ini memiliki karakter yang khas, karena perpaduan lingkungan perairan dan daratan. Salah satunya, komunitas tumbuhan pada mintakat ini dicirikan oleh tetumbuhan yang beradaptasi dengan perairan, yakni jenis-jenis tumbuhan hidrofilik; yang dikenal sebagai vegetasi riparian. Perkataan ri...

 

 

Sparkassen Cup 2003 Sport Tennis Data 22 settembre – 28 settembre Edizione 13a Superficie Sintetico indoor Campioni Singolare Anastasija Myskina Doppio Martina Navrátilová / Svetlana Kuznecova 2002 Lo Sparkassen Cup 2003 è stato un torneo femminile di tennis giocato sul sintetico indoor. È stata la 13ª edizione del torneo, che fa parte della categoria Tier II nell'ambito del WTA Tour 2003. Si è giocato a Lipsia in Germania, dal 22 al 28 settembre 2003. Indice 1 Campionesse 1.1 Singol...

 

 

British athlete, competing in high jump This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2010) (Learn how and when to remove this message) Martyn Bernard Martyn Bernard in 2014 Medal record Representing  Great Britain Men's athletics European Athletics Championships 2010 Barcelona High jump European Indoor Champion...

Galatasaray 1923–24 football seasonGalatasaray1923–24 seasonPresident Yusuf Ziya ÖnişManager Adil GirayStadiumTaksim StadıIstanbul Lig2nd Home colours Away colours ← 1922–231924–25 → The 1923–24 season was Galatasaray SK's 20th in existence and the club's 14th consecutive season in the Istanbul Football League. Nihat Bekdik and Slavia Prague Captain Squad statistics No. Pos. Name IFL Total Apps Goals Apps Goals - GK Nüzhet Abbas Öniş 5 0 5 0 - GK Adil Gir...

 

 

AnimaniacsGenreAnimasi komedi/ VariasiPembuatTom RueggerPengisi suaraRob PaulsenJess HarnellTress MacNeilleJohn MarianoDee Bradley BakerMaurice LaMarcheFrank WelkerBernadette PetersNancy CartwrightJulie BrownMary Kay BergmanSherri StonerNathan RueggerLuke RueggerCody RueggerJim CummingsTom BodettPenggubah lagu temaRichard StoneLagu pembukaAnimaniacs (vokal)Lagu penutupAnimaniacs (instrumental)Penata musikRichard StoneSteve BernsteinJulie BernsteinGordon GoodwinNegara asal Amerika ...

 

 

ElbasanNegaraAlbaniaCountyCounty ElbasanDistrikDistrik ElbasanFounded15th centuryPemerintahan • MayorQazim Sejdini SP[1]Luas • Total1.290 km2 (500 sq mi)Ketinggian150 m (490 ft)Populasi (2001) • Total87.797Zona waktuUTC+1 (Central European Time) • Musim panas (DST)UTC+2 (CEST)Postal code3001-3006Kode area telepon054Car platesELSitus webwww.elbasani.gov.al Kastel Elbasan Sudut kota Elbasan Elbasan merupakan n...

Roman Catholic diocese in Lithuania Military Ordinariate of LithuaniaLietuvos kariuomenės ordinariatasLocationCountry LithuaniaCoordinates54°40′56″N 25°16′58″E / 54.68222°N 25.28278°E / 54.68222; 25.28278InformationDenominationRoman CatholicSui iuris churchLatin ChurchRiteLatin RiteEstablished25 November 2000 (23 years ago)CathedralCathedral of St. Ignatius of Loyola, VilniusCurrent leadershipPopeFrancisBishopVacantApostolic AdministratorGintaras Gru...

 

 

Substance composed of chemically identical molecular entities Chemical species are a specific form of chemical substance or chemically identical molecular entities that have the same molecular energy level at a specified timescale. These entities are classified through bonding types and relative abundance of isotopes.[1] Types of chemical species can be classified based on the type of molecular entity and can be either an atomic, molecular, ionic or radical species. Classificatio...